This document gives pertinent information concerning the reissuance of the VPDES permit listed below. This permit is being processed as a Major, Municipal permit. The effluent limitations contained in this permit will maintain the Water Quality Standards of 9 VAC 25-260-00 et.seq.

This discharge is into Middle Fork Holston River resulting from the operation of a 3.4 MGD wastewater treatment plant which provides: primary treatment: influent pump station, dual manually cleaned bar screen and one mechanical self-cleaning filter screen; one manually cleaned and one mechanically cleaned aerated grit removal chamber; dual primary clarifiers; secondary treatment: dual activated bio-filters, four aeration basins, and dual secondary clarifiers; disinfection: ultraviolet light; post-aeration: dual aeration tanks with diffusers; flow measurement: Parshall flume/ultrasonic flowmeter; sludge treatment: described in Item #10 below; other: non-potable water pumps and system, froth control pumps, polymer feed system for belt press, and fully equipped laboratory. See attachment A for more detailed description. This permit action consists of limiting pH, BOD_5 , suspended solids, total residual chlorine, ammonia nitrogen, E.coli and dissolved oxygen; including special conditions regarding biosolids use and disposal, biosolids limitations and monitoring requirements and soil monitoring requirements for land application sites; compliance reporting, pretreatment program implementation, toxics management program, and other requirements and special conditions. SIC Code: 4952

- 1. Facility Name and Address:
 Town of Marion Wastewater Treatment Plant
 1580 Daisy Lane
 Marion, VA 24354
- 3. Owner Name and Address:
 Town of Marion
 P.O. Box 1005
 Marion, VA 24354

Owner Contact: Mr. John E.B. Clark, Jr. Title: Town Manager Telephone No: 276-783-4113

Facility Contact:
Name: Douglas L. Teaster
Title: Chief Operator

Telephone No: 276-782-8495

- 4. Application Complete Date: February 8, 2011 04/14/2011 IMW

 Permit Drafted By: Fred M. Wyatt, SWRO Date: January 31, 2011

 Reviewed By: St. Z. Out. Date: 2/28/11

 Public Comment Period Dates: from 04/16/2011 to 05/16/2011
- 5. Receiving Stream Name: Middle Fork Holston River; River Mile: 6CMFH039.58; Basin: Tennessee-Big Sandy River; Subbasin: Holston River; Section: 5; Class: IV; Special Standards: None. Lat.: 36°49'21"; Long.: 81°33'08"

7-Day, 10-Year Low Flow (7Q10): 11.9 MGD (June - Nov.) 1-Day, 10-Year Low Flow (1Q10): 9.3 MGD (June - Nov.)

7Q10 High Flow: 14.5 MGD (Dec. - May) 1Q10 High Flow: 12.5 MGD (Dec. - May)

30-Day, 10-Year Low Flow (30Q10): 17.7 MGD (June - Nov.)

30Q10 High Flow: 36.4 MGD (Dec. - May)

Tidal? No

303(D) list? Yes (See Item # 13 below)

- 6. Operator License Requirements: Class II
- 7. Reliability Class: II
- 8. Permit Characterization:
 - () Private () Federal () State (X) POTW () PVOTW
 - () Possible Interstate Effect () Interim Limits in Other Document
- 9. Attach a schematic of and provide a brief description of the wastewater treatment system.

Discharge Description

	21201101290 2020111201		
OUTFALL	DISCHARGE SOURCE	TREATMENT	DESIGN
NUMBER	(1)	(2)	FLOW
			(3)
001	Town of Marion and surrounding sections of Smyth County	See Page 1 above, first paragraph	3.4 MGD

10. Sewage Sludge

Sewage Sludge Treatment Process: Approximately 150 dry metric tons of sludge are produced at this facility each year. Sludge treatment consists of: dual sludge return pumps, gravity sludge thickener, one primary and one secondary anaerobic digester; and belt filter press for sludge dewatering.

Since the land application of biosolids has been chosen as the disposal method on the VPDES Sewage Sludge Permit Application Form, permit limits and monitoring requirements are necessary based on the VPA Permit Regulation (9VAC25-32 Sections 310 through 760) and the VPDES Permit Regulation (9VAC25-31 Sections 420 through 720), and 40 CFR Part 503.

Pathogen Reduction and Vector Attraction Reduction: The sewage treatment works must achieve the following treatment standards:

- a. Class B pathogen reduction by one of the applicable reduction alternatives specified in 9VAC25-31-710.
- b. Vector attraction reduction by one of the applicable alternatives specified in 9VAC25-31-720.

The permit authorizes the land application of biosolids to three fields on the Scott Waddle Farm in Smyth County and to four fields on the William S. Meek Farm in Smyth County, consisting of 170.5 gross acres.

<u>Site</u>	Owner	Description	Acreage (acres)	County
S01	William S. Meek	Field # 12	11.6	Smyth
S02	William S. Meek	Field # 13	11	Smyth
S03	William S. Meek	Field # 18	19	Smyth
S04	William S. Meek	Field # 19	21	Smyth
S05	Scott Waddle	Area A	27.4	Smyth
S06	Scott Waddle	Area B	39.4	Smyth
S07	Scott Waddle	Area C	41.1	Smyth

Biosolids Characterization: The attached sludge analyses indicate that all metals concentrations in the sludge are less than the Ceiling Concentration Limits presented in Table 1 of the permit regulation (9VAC25-31-540). Therefore, the sludge meets the land application requirement for the Pollutant Concentration Option (Table 3, 9VAC25-31-540) and may only be applied in bulk.

Table A

<u>LIMITATIONS AND MONITORING REQURIEMENTS FOR POLLUTANT CONCENTRATIONS</u>

BIOSOLIDS (PC BIOSOLIDS):

	BASIS FOR	MONITORING REQUIREMENTS				
PARAMETER	LIMITS	Maximum ^a	Monthlyb	Frequency ^c	Sample Type	
Total Arsenic (mg/kg)	1,2,3,4,5	75	41	1/Year	Composite	
Total Cadmium (mg/kg)	1,2,3,4,5	85	39	1/Year	Composite	
Total Copper (mg/kg)	1,2,3,4,5	4,300	1,500	1/Year	Composite	
Total Lead (mg/kg)	1,2,3,4,5	840	300	1/Year	Composite	
Total Mercury (mg/kg)	1,2,3,4,5	57	17	1/Year	Composite	
Total Molybdenum (mg/kg)	1,2,3,4	75	NA	1/Year	Composite	
Total Nickel (mg/kg)	1,2,3,4,5	420	420	1/Year	Composite	
Total Selenium (mg/kg)	1,2,3,4,5	100	100	1/Year	Composite	
Total Zinc (mg/kg)	1,2,3,4,5	7,500	2,800	1/Year	Composite	
Percent Solids (%)	1,2,3	NA	NL	1/Year	Composite	
Volatile Solids (%)	1,2,3	NA '	NL	1/Year	Composite	
TKN (mg/kg)	1,2,3	NA .	NL	1/Year	Composite	
Ammonium Nitrogen (mg/kg)	1,2,3	NA	NL	1/Year	Composite	
Nitrate Nitrogen (mg/kg)	1,2,3	NA	NL	1/Year	Composite	
Total P (mg/kg)	1,2,3	NA	NL	1/Year	Composite	
Total K (mg/kg)	1,2,3	NA	NL	1/Year	Composite	
рН (SU)	1,2,3	NA	NL	1/Year	Composite	
CCE as CaCO ₃ (%)	1,2,3	NA	NL	1/Year	Composite	

- a. If the concentration of any metal in Table A above exceeds the <u>maximum</u> concentration, for any single sample of biosolids, then the biosolids shall not be land applied.
- b. If the concentration of any metal in Table A above exceeds the monthly average concentration but is less than the maximum concentration, the cumulative loading of the metals must be tracked. See *Cumulative Pollutant Loading Rate Limitations Table below*.
- c. If the annual amount of biosolids produced at the facility exceeds 290 dry metric tons the facility shall increase the sampling to the monitoring frequency listed below:

Amount of biosolids (dry metric tors per 365-day period)	Frequency
Greater than zero but less than 290	Once per year
Equal to or greater than 290 but less than 1,500	Once per quarter (four times per year)
Equal to or greater than 1,500 but less than 15,000	Once per 60 days (six times per year)
Equal to or greater than 15,000	Per month (12 times per year)

Bases for Effluent Limitations

- 1. 9VAC25-31-570
- 2. 9VAC25-31-490
- 3. 9VAC25-31-560
- 4. 9VAC25-31-540, Table 1
- 5. 9VAC25-31-540, Table 3

Table B Cumulative Pollutant Loading Rate Limitations (CPLR) Biosolids:

	BASIS	LIMITA	TIONS	MONITORING REQUIREMENTS		
PARAMETER	FOR	CPL	Rª	Frequency	Cample Time	
	LIMITS	(kg/ha)	(lb/A)	Frequency	Sample Type	
Total Arsenic (mg/kg)	1	41	36	Each Application	Calculated	
Total Cadmium(mg/kg)	. 1	. 39	35	Each Application	Calculated	
Total Copper(mg/kg)	1	1,500	1,340	Each Application	Calculated	
Total Lead(mg/kg)	1	300	270	Each Application	Calculated	
Total Mercury (mg/kg)	1	17	16	Each Application	Calculated	
Total Nickel(mg/kg)	1	420	375	Each Application	Calculated	
Total Selenium(mg/kg)	1	100	89	Each Application	Calculated	
Total Zinc(mg/kg)	1	2,800	2,500	Each Application	Calculated	

- a. Cumulative Pollutant Loading Rates must be tracked <u>only</u> if the monthly average concentrations for the metals listed in Table B above are exceeded.
- b. Samples shall be collected prior to each land application activity.

Bases for Effluent Limitations

1. 9VAC25-31-540, Table 2

Unless otherwise stated, all biosolids parameters are reported on a dry weight basis

Table C Soils Monitoring Requirements for each Land Application Field:

			MONITORING REQ	UIREMENTS
PARAMETER	BASIS FOR LIMITS	LIMITATIONS	Frequency ^c	Sample Type ^d
Soil pHª(SU)	1,2	NL	Prior to Application	Composite
Cation Exchange Capacity (meq/100 g)	1,2	NL	Prior to Application	Composite
Available Phosphorus (mg/kg)	1,2	NL	Prior to Application	Composite
Exchangeable Potassium (mg/kg)	1,2	NL	Prior to Application	Composite
Exchangeable Magnesium (mg/kg)	1,2	NL	Prior to Application	Composite

NL = No Limitation, monitoring required

- a. 9VAC25-32-560.B.3.a. Lime amended biosolids shall be applied at rates that are not expected to result in a target soil pH in the plow layer above a pH of 6.5 for soils located in the coastal plain and above a pH of 6.8 in other areas of the state.
- b. 9VAC25-32-660. If soils exhibit very high soil test phosphorus of 55 or more parts per million phosphorus (Mehlich I analytical test procedure or equivalent procedure approved by the Department of Conservation and Recreation), the maximum application rates for phosphorus contained in biosolids together with phosphorus contained in other applied nutrient sources to the site and all applicable phosphorus management practices shall be consistent with the nutrient management plan (prepared by a certified nutrient management planner as stipulated in regulations promulgated pursuant to §10.1-104.2 of the Code of Virginia).
- c. Soil samples shall be collected prior to biolsolids application and analyzed no more than 3 years prior to the application. For biosolids with a cadmium concentration greater than or equal to 21 mg/kg the soil pH sample must be less than 1 year old.
- d. Soil composite samples shall be representative of soil types delineated by the SCS Soil Survey (or the equivalent). Samples shall be taken at 0-6 inches soil depth for each land applications site. Soil testing used to develop a Nutrient Management Plan must be conducted by a DCR approved laboratory in accordance with the Virginia Nutrient Management Standards and Criteria.

Bases for Effluent Limitations

- 1. 9VAC25-32-460
- 2. 9VAC25-32, Table 5

Land Area Determination:

Nutrients: All nutrient loading issues are addressed in the Nutrient Management Plan. (See Special Conditions).

- 11. Discharge Location Description: See attached Marion VA Quadrangle;
 Number: 056D
- 12. Material Storage: None reported
- 13. Ambient Water Quality Information: This segment of Middle Fork Holston River is impaired. The segment is not supporting the recreation use goal. The impairment is listed as Escherichia coli. The sources are rural (residential areas) and unrestricted cattle access. A bacteria TMDL was approved by EPA on 04/12/2010 and by EPA on 12/09/2010. The Town of Marion WWTP is in compliance with the bacterial (E.coli) wasteload allocation in the TMDL.
- Antidegradation Review & Comments: Tier I (X) Tier II Tier III 14. The State Water Control Board's Water Quality Standards includes an antidegradation policy (9 VAC 25-260-30). All state surface waters are provided one of three levels of antidegradation protection. For Tier 1 or existing use protection, existing uses of the water body and the water quality to protect these uses must be maintained. Tier 2 water bodies have water quality that is better than the water quality standards. Significant lowering of the water quality of Tier 2 waters is not allowed without an evaluation of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters. The antidegradation review begins with a Tier determination. Since the receiving stream is listed on the 303(D) Report as impaired, it is considered as Tier I.
- 15. Site Inspection: Technical Inspection on 6/18/2010 by Wade Carico.
- 16. Effluent Screening & Limitation Development: The BOD⁵ and dissolved oxygen effluent limitations were calculated in 1990 by using a Streeter-Phelps wasteload allocation model. The ammonia nitrogen effluent limitations were originally calculated using the existing statistical model and stream standards in 1990. At the permit reissuance in 1996, the limits were recalculated, based on new stream flow data.

Basis for Effluent Limitations: 3.4 MGD WWTP

		DISCHARGE LIMITS			MONITORING REQUIREMENTS		
PARAMETER	BASIS FOR LIMITS *	MONTHLY AVERAGE	WEEKLY AVERAGE	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE
Flow .	NA	NL	NA	NA	NL	Continuous	Totalizing & Recording
PH	2	NA	NA	6.0 SU	9.0 SU	1/Day	Grab
CBOD ₅	1,5	25 mg/l 320 kg/d	38 mg/l 480 kg/d	NA	NA	1 Day/Week	24 Hour Composite
Total Suspended Solids	1	30 mg/l 390 kg/d	45 mg/l 580 kg/d	NA .	NA	1 Day/Week	24 Hour Composite
Ammonia Nitrogen	2,5	3.6 mg/l	4.4 mg/l	NA	NA -	1 Day/Week	24 Hour Composite
E.coli	2	126 n/100 . ml**	NA	NA	NA	3/Week @ 48 Hr. Inter.***	Grab
Dissolved Oxygen	2,5	NA	NA	6.0 mg/l	NA	1/Day	Grab
Chronic Toxicity Units	2	NA	NA	NA	NL TU _C	1/Year	24 Hour Composite

- *1. Federal Effluent guidelines
- 2. Water Quality-based Limits
- 3. Best Engineering Judgment
- 4. Best Professional Judgment
- 5. Other (e.g wasteload allocation model)
- ** Geometric Mean
- *** Between 10 a.m. and 4 p.m.
- 17. Sludge Use and Disposal See Items 10 and 20
- 18. Antibacksliding Statement: Since the effluent limitations are not being altered, the antibacksliding provisions of the Permit Regulation (9 VAC 25-31-220.1) do not apply.
- 19. Compliance Schedules: None
- 20. Special Conditions:

PART I.B. Compliance Reporting

Rationale: Authorized by VPDES Permit Regulation, 9VAC25-31-190J4 and 220 I. This condition is necessary when pollutants are monitored by the permittee and a maximum level of quantification and/or a specific analytical method is required in order to assess compliance with a permit limit or to compare effluent quality with a numeric criterion. The condition also establishes protocols for calculation of reported values.

PART I.C. Special Condition - Pretreatment Program Implementation Rationale: VPDES Permit Regulation, 9VAC25-31-730 through 900, and 40 CFR part 403 require certain existing and new sources of pollution to

meet specified regulations.

PART I.D. Special Condition - Whole Effluent Toxicity Testing
Rationale: VPDES Permit Regulation, 9VAC25-31-210 and 220I, requires
monitoring in the permit to provide for and assure compliance with all
applicable requirements of the State Water Control Law and the Clean
Water Act.

PART I.E. Biosolids Land Application Special Conditions

- 1. Sludge Use and Disposal (Part I.E.1)

 Rationale: VPDES Permit Regulation, 9VAC25-31-100 P; 220 B 2; and 420 through 720, and 40 CFR Part 503 require all treatment works treating domestic sewage to submit information on sludge use and disposal practices and to meet specified standards for sludge use and disposal.
- 2. Sludge Reopener (Part I.E.2)

 Rationale: Required by VPDES Permit Regulation, 9VAC25-31-220 C 4, for all permits issued to treatment works treating domestic sewage.
- 3. Nutrient Management Plan Requirement: (Part I.E.3)
 Rationale: State Water Control Law § 62.1-44.19.3.C.8 requires that a NMP be developed by a person certified in accordance with § 10.1-104.2 for each biosolids land application site, prior to application of biosolids at the site. The statute also establishes conditions where the NMP must be approved by the Department of Conservation and Recreation prior to submittal at the time of permit application.
- 4. Loading Rates: (Part I.E.4)
 Rationale: 9VAC25-31-505.A Site specific nutrient management plans and the cumulative trace element loading rates (9VAC25-32-540 Table 2) 9VAC25-31-220.I.4.a. states that mass or other measurements for each pollutant of concern may be specified in the VPDES Permit. 9VAC25-31-220.I.4.c. allows for other measurements as appropriate.
- 5. 14 Day Notification: (Part I.E.5)

 Rationale: State Water Control Law § 62.1-44.19.3.L. and 9VAC25-31-485.D. require notification to the Department 14 days prior to land application at a specific site.
- 6. Signage Requirements: (Part I.E.6)
 Rationale: 9VAC25-32-530.B. requires a sign be posted at a land application site at least 48 hours prior to delivery of biosolids at the site and remain on site until 48 hours after application is complete. 9VAC25-32-530.C-D specifies construction, content and maintenance of the sign.
- 7. 100 Day Notification to the Locality: (Part I.E.7)

 Rationale: 9VAC25-31-485.C. requires notification to the locality 100 days prior to the initial land application at a specific site.

- 8. Certified Land Applicator Requirement: (Part I.E.8)
 Rationale: State Water Control Law § 62.1-44.19.3.1.B. states that
 Class B biosolids shall not be land applied unless a certified land
 applicator is onsite at all times during the application.
- 9. Threatened or Endangered Species: (Part I.E.9)
 Rationale: 9VAC25-31-550.A requires that land application of biosolids in accordance with the regulations is not to result in harm to threatened or endangered species listed in 9VAC25-260-320 nor result in the destruction or adverse modification of the critical habitat of a threatened or endangered species.
- 10. Infrequent Application: (Part I.E.10)
 Rationale: 9VAC25-32-560.B.3.a(1) specifies requirements for infrequent application.
- 11. Frequent Application Below Agronomic Rate: (Part I.E.11)
 Rationale: 9VAC25-32-560.B.3.a(5) specifies requirements for frequent, below agronomic rate application.
- 12. Liquid Application Rate Limitation: (Part I.E.12)
 Rationale: 9VAC25-32-560.B.3.c(1) specifies requirements for application of liquid biosolids.
- 13. Operational Limitations During Periods of Inclement Weather (Part I.E.13)

Rationale: 9VAC25-31-505.A - NMP specifies requirements for application during inclement weather.

- 14. Injection or Incorporation Requirements: (Part I.E.14)
 Rationale: 9VAC25-32-560.B.3.b. requires direct injection or incorporation within 48 hours of application on sites with less than 60% uniform residue cover or at times when the site is subject to frequent flooding as defined by soil survey information.
- 15. Slope Restrictions: (Part I.E.15)

 Rationale: 9VAC25-32-560.B.3.b.c. specifies maximum slope restrictions and management practices to follow when applying on fields with slopes between 5% and 15%.
- 16. Buffer Zones: (Part I.E.16)

 Rationale: 9VAC25-32-560.B.3.d(1) establishes setback distances.
- 17. Transport Vehicles: (Part I.E.17)

 Rationale: 9VAC25-32-540.A. requires that vehicles transporting biosolids be sealed and watertight if carrying liquid biosolids.
- 18. Soil pH and Cadmium: (Part I.E.18)

Rationale: 9VAC25-32-560.B.2. requires that the biosolids/soil mixture have a final pH of 6.0 S.U. or greater if the soil cadmium concentration is greater than 21 mg/kg.

Rationale: 9VAC25-32-560.B.2. requires that the biosolids/soil mixture have a final pH of 6.0 S.U. or greater if the soil cadmium concentration is greater than 21 mg/kg.

- 19. Landowner Consent and Notice: (Part I.E. 19)
 Rationale: 9VAC25-32-60.A.1.d. requires the submission of landowner consent forms. 9VAC25-32-80.H.2. requires the consent forms to be maintained for a minimum of 5 years or for the duration of the permit. 9VAC25-32-530.A. requires the permittee to maintain the agreement.
- 20. Site Restrictions for Land Application of Class B Biosolids: (Part I.E.20.)

Rationale: 9VAC25-31-710.B.5. requires restricted access for sites based on type of food crops, grazing livestock and human access.

- 21. Depth to Water Table: (Part I.E.21)

 Rationale: Required for biosolids based on 9VAC25-32-560.B.2.
- 22. Depth to Bedrock: (Part I.E.22)

 Rationale: Required for biosolids based on 9VAC25-32-560.B.2.
- 23. Restrictions for CPLR Biosolids Application: (Part I.E.23)

 Rationale: 9VAC25-32-640 establishes maximum cumulative pollutant loading of trace elements on soils.
- 24. Restrictions for CPLR Biosolids Application to Sites Previously Used: (Part I.E.24)

 Rationale: 40 CFR Part 503.12(e)(2)(i-iv), which applies to all biosolids applied in the USA, establishes July 20, 1993 as the date to begin accounting for pollutant loading to soils.
- 25. CPLR Biosolids Tracking: (Part I.E.25)
 Rationale: Required in order to comply with Part I.G.24.
- 26. Recordkeeping for PC and CPLR Biosolids: (Part I.E.26)

 Rationale: 9VAC25-31-190.J.2. requires the maintenance of all biosolids monitoring and reporting records for at least 5 years.
- 27. Additional Recordkeeping for CPLR Biosolids: (Part I.E. 27) Rationale: 9VAC25-31-580.A.5. requires the maintenance of all biosolids monitoring and reporting records for at least 5 years. Items g through m are required indefinitely in order to comply with Part I.D.24, as identified in 40 CFR Part 503.17(2).
- 28. Reporting Land Application of Biosolids Upon Attaining 90% of CPLR: (Part I.E.28)

Rationale: 40 CFR Part 503.18(2), which applies to all biosolids applied in the USA, requires this reporting.

Part F. Special Condition - Biosolids Reporting Requirements

1. Monitoring Report: (Part I.F.1)

Rationale: 9VAC25-31-590 states that biosolids monitoring is to be submitted annually unless otherwise required.

2. Monthly Activity Report: (Part I.F.2)

Rationale: 9VAC25-32-440-B and Fee Regulation 9VAC25-20-147.B require submittal of a report by the 15th of the month following the month in which land application occurred.

3. Land Application Fee: (Part I.F.3)

Rationale: State Water Control Law § 62.1-44.19.3.P. requires that a fee be charged to the generator of biosolids to be land applied in Virginia. The fee of \$7.50/dry ton of biosolids applied in the Commonwealth of Virginia is established by the Fee Regulation 9VAC25-20-146 and 9VAC25-20-40 A.3. Exemptions to the fee are provided in 9VAC25-20-50.C. 9VAC20-60.D establishes the due date.

4. Annual Report: (Part I.F.4)

Rationale: 9VAC25-31-590 requires the submittal of an annual report postmarked by February 19th for the previous year.

5. Records Retention: (Part I.F.5)

Rationale: 9VAC25-31-580 specifies that all records of biosolids activities, monitoring and reporting shall be maintained for at least 5 years.

PART G. Biosolids Storage Special Conditions:

1. Storage Regulatory Basis: (Part I.G.1)

Rationale: Requirements pursuant to § 62.1-44.19.3.R. of the Code of Virginia.

2. Emergency Storage: (Part I.G.2)

Rationale: 9VAC25-32-550 B and C require certain conditions to be met for temporary storage of biosolids.

3. Temporary Storage: (Part I.G.3)

Rationale: 9VAC25-32-550 B and D require certain conditions be met for temporary storage of biosolids.

PART H. Other Requirements and Special Conditions:

1. 95% Capacity Reopener

Rationale: Required by VPDES Permit Regulation, 9VAC25-31-200 B 4 for all POTW and PVQTW permits

2. Indirect Dischargers

Rationale: Required by VPDES Permit Regulation, 9VAC25-31-200 B 1 and B 2 for POTWs and PVOTWs that receive waste from someone other than the owner of the treatment works.

3. CTC, CTO Requirement

Rationale: Required by the Code of Virginia § 62.1-44.19: Sewage Collection and Treatment Regulations, 9VAC25-790.

4. Operation and Maintenance Manual Requirement

Rationale: Required by the Code of Virginia § 62.1-44.19: Sewage Collection and Treatment Regulations, 9VAC25-790; VPDES Permit Regulation, 9VAC25-31-190 E.

5. Licensed Operator Requirement

Rationale: The VPDES Permit Regulation, 9VAC25-31-200 C and the Code of Virginia § 54.1-2300 et seq, Rules and Regulations for Waterworks and Wastewater Works Operators (18VAC160-20-10 et seq.), require licensure of operators.

6. Reliability Class

Rationale: Required by the Sewage Collection and Treatment Regulations, 9 VAC25-790 for all municipal facilities.

7. Treatment Works Closure Plan

Rationale: State Water Control Law § 62.1-44.19. This condition is used to notify the owner of the need for a closure plan where a treatment works is being replaced or is expected to close.

8. Section 303(d) List (TMDL) Reopener

Rationale: Section 303(d) of the Clean Water Act requires the total maximum daily loads (TMDLs) be developed for streams listed as impaired. This special condition is to allow the permit to be reopened if necessary to bring it in compliance with any applicable TMDL approved for the receiving stream. The reopener recognizes that, according to Section 402(o)(1)of the Clean Water Act, limits and/or conditions may be either more or less stringent than those contained in the permit. Specifically, they can be relaxed if they are the result of a TMDL, basin plan, or other wasteload allocation prepared under Section 303 of the Act.

PART II, Conditions Applicable to All Permits

Rationale: VPDES Permit Regulation, 9VAC25-31-190 requires all VPDES permits to contain or specifically cite the conditions listed.

21. Changes from the previous permit:

This permit was drafted using guidance provided in the January, 2010 permit manual, which is revised on a continuous basis, resulting in minor changes to permit requirements and conditions.

Based on the performance of the WWTP, current guidance, and best professional judgment, the monitoring frequency for the BOD_5 and total suspended solids is being reduced from 3 days/week to 1 day/week.

PART IB. Special Condition - Bacterial Limitations and Monitoring Requirements - Additional Instructions has been deleted, since the treatment facility is now achieving compliance with the final E.coli permit limitations.

The permit format for sewage biosolids (sludge)/soil limitations and monitoring requirements have been updated. New and updated special conditions for biosolids land application, reporting, and storage are

included.

The land applications sites Scott Wadddle Farm are being added to the VPDES Permit. These sites were previously approved by DEQ on November 8, 1986, as Addendum 1 to the Sludge Management Plan. The Nutrient Management Plan (dated 9/22/2006) for these sites was also approved on this date. An updated Nutrient Management Plan, dated 5/05/2010, has been incorporated into the Sludge Management Plan.

During the previous permit cycle, the permittee completed the water quality criteria monitoring required in PART I F.8. and Attachment A. No water quality violations were detected and this requirement is not being included in the reissued permit.

The new permit also includes the current PART II boilerplate.

- 22. Regulation of Users: 9 VAC 25-31-280 B 9 NA
- 23. Public Notice Information required by 9 VAC 25-31-280 B:

HOW TO COMMENT AND/OR REQUEST A PUBLIC HEARING: DEQ accepts comments and requests for public hearing by e-mail, fax or postal mail. All comments and requests must be in writing and be received by DEQ during the comment period. Submittals must include the names, mailing addresses and telephone numbers of the commenter/requester and of all the persons represented by the commenter/requester. A request for a public hearing must also include; 1) The reason why a public hearing is requested. 2) A brief, informal statement regarding the nature and extent of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit. 3) Specific references, where possible, to terms and conditions of the permit and suggested revisions. DEQ may hold a public hearing, including another comment period, if public response is significant and there are substantial, disputed issues relevant to the permit.

CONTACT FOR PUBLIC COMMENTS, DOCUMENT REQUESTS AND ADDITIONAL INFORMATION:

Name: Fred M. Wyatt

Address: DEQ, Southwest Regional Office, P.O. Box 1688, 355 Deadmore Street, Abingdon, Virginia, 24212-1688 Phone: (276) 676-4810 E-mail: Frederick.Wyatt@deq.virginia.gov Fax: (276) 676-4899

Following the comment period, the Board will make a determination regarding the proposed **reissuance**. This determination will become effective, unless the DEQ grants a public hearing. Due notice of any public hearing will be given.

24. Additional Comments:

Application: By letter dated December 23, 2010, the Town of Marion requested application testing waivers, for the FORM 2A NPDES. A copy of this request was sent to EPA on February 3, 2011. If EPA concurs,

the Board intends to grant a waiver for the following application testing requirements:

PART B.6, EFFLUENT TESTING DATA: TKN, nitrate plus nitrite nitrogen, oil and grease, and total phosphorus.

Permit History: VPDES Permit No. VA0086304 for this facility was issued on 7/11/1991, was reissued on 7/11/1996, 7/11/2001, and 7/12/2006 with an expiration date of 7/11/2011.

Threatened or Endangered (T&E) Species: According to the attached printout from the Virginia Fish and Wildlife Information Service, this section of Middle Fork Holston River is classified as both federal and state T&E waters. The following mussel species have been confirmed as present: (FESE)-Rough rabbitsfoot (Quadrula cylindrical strigillata), (FESE)- Tan riffleshell (Epioblasma florintina walkeri), (FCST)-slabside pearlymussel (Lexingtonia dolabelloides), (ST)- Black sandshell(Ligumia recta). These species have also been confirmed as present: (ST)-Longhead darter (Percina macrocephala), (CC)-Eastern hellbender (Cryptobranchus alleganiensis alleganiensis). A T&E Coordination Form has been sent to both the Department of Game & Inland Fisheries (DFIF) and the Department of Conservation & Recreation (DCR).

US Fish & Wildlife Services has previously been notified of the land application sites and no new sites are being added. In accordance with current guidance, T&E coordination is not required, since all the sites have been in continuous agricultural production for more than 5 years.

Federal Storm Water Regulations: The permittee has complied with the Phase 2 requirements by submitting a VIRGINIA DEQ NO EXPOSURE CERTIFICATION FOR EXCLUSION FROM VPDES STORM WATER PERMITTING.

Permit Fee: A permit fee is not required. Only an annual maintenence fee of \$7,138 is required, to be paid by October 1 of each year.

Previous Board Action: None

Staff Comments:

Public Comments: None

25. 303(d) listed segments (TMDL): A bacteria TMDL was approved by EPA on 04/12/2010 and by EPA on 12/09/2010. The Town of Marion WWTP is in compliance with the bacterial (E.coli) wasteload allocation in the TMDL.

VPDES PERMIT FACT SHEET PAGE 15

PLANNING CONCURRENCE FOR MUNICIPAL VPDES PERMIT

FA	RMIT NO CILITY: UNTY:	-	MO086304 Town of Marion WWTP Town with
[]	1.	The discharge is in conformance with the existing planning documents for the area.
[]	2.	The discharge is not addressed in any planning document but will be included, if required, when the plan is updated.
[1	3.	Other.
			Date

Wyatt, Frederick (DEQ)

From:

Wyatt, Frederick (DEQ)

Sent:

Friday, February 25, 2011 11:18 AM ProjectReview (DGIF)

To:

Subject:

Reissuance of VPDES Permit No. VA0086304 for Town of Marion Wastewater Treatment

Attachments:

Plant, Smyth Co.
TECoordination FormMarion.pdf; abgdnscan@deq.virginia.gov_20110225_121816.pdf

Fred M. Wyatt **Environmental Engineer Senior**

(276) 676-4810

email: Frederick.Wyatt@deq.virginia.gov

VPDES PERMITS

Threatened and Endangered Species Coordination

To: X DGIF, Environmental Review Coordinator DCR USFWS, T/E Review Coordinator From: Fred M. Wyatt, Southwest Regional Office, fmwyatt@deq.virginia.gov	Date Sent: 02/25 /2011 Permit Number: VA0086304
Facility Name: Town of Marion WWTP	Location: 1580 Daisy Lane, Marion, VA Smyth Co.
Contact: John E.B. Clark, Jr.	USGS Quadrangle: Marion, VA
Town Manager	Latitude/Longitude: 36049'21"/81033'08" Receiving Stream: Middle Fork Holston River
Phone: (276) 783-4113	Receiving Stream Flow Statistics used for Permit:
Address: P.O. Box 1005	7Q10: 11.9 MGD
Marion, VA 24354	High Flow 7Q10: 14.5 MGD 1Q10: 9.3 MGD High Flow 1Q10: 12.5 MGD 30Q10: 17.7 MGD High Flow 30Q10: 36.4 MGD
	See attached location map.
Effluent Characteristics and Max Daily Flow:	Species Search Results: Mussels: (FESE)-Rough rabbitsfoot (Quadrula
Design Flow: 3.4 MGD	cylindrical strigillata), (FESE)- Tan riffleshell (Epioblasma florintina walkeri), (FCST)-slabside
See attached sheets	pearlymussel (Lexingtonia dolabelloides), (ST)-Black sandshell (Ligumia recta). Other: (ST)-Longhead darter (Percina macrocephala), (CC)-Eastern hellbender (Cryptobranchus alleganiensis alleganiensis).

Attach draft permit effluent limits page if available.

DGIF email: projectreview@dgif.virginia.gov USF&W fax: (804)693-9032

Virginia Department of Game and Inland

Fisheries

2/2/2011 7:46:51 AM

Fish and Wildlife Information Service

VaFWIS Initial Project Assessment Report

Help

Compiled on 2/2/2011, 7:46:51 AM 324000.0

Known or likely to occur within a 2 mile radius of 36,49,21.0 -81,33,07.8 in 173 Smyth County, VA

468 Known or Likely Species ordered by Status Concern for Conservation

(displaying first 37) (37 species with Status* or Tier I **)

BOVA Code			Common Name	Scientific Name	Confirmed	Database(s)
060094	FESE	I	Pearlymussel, littlewing	Pegias fabula		BOVA
060052	FESE	I ·	Pigtoe, shiny	Fusconaia cor		BOVA
060122	FESE	I	Rabbitsfoot, rough	Quadrula cylindrica strigillata	<u>Yes</u>	TEWaters
060036	FESE	I	<u>Riffleshell,</u> tan	Epioblasma florentina walkeri	Yes	TEWaters,BOVA,HU6
050021	FESE	П	Bat, gray	Myotis grisescens	<u>Yes</u>	Collections,HU6
010330	FTST	Ι	<u>Chub,</u> spotfin	Erimonax monachus	,	BOVA,HU6
010430	SE	I	<u>Dace,</u> <u>Tennessee</u>	Chrosomus tennesseensis		BOVA,HU6
010344	SE	I	<u>Darter,</u> sharphead	Etheostoma acuticeps		HU6
040267	SE	I	<u>Wren,</u> <u>Bewick's</u>	Thryomanes bewickii		BOVA
050068	SE	I	Squirrel, Virginia northern flying	Glaucomys sabrinus fuscus		BOVA
060080	SE	П	Heelsplitter, Tennessee	Lasmigona holstonia		BOVA,HU6

060139	FSSE	п	Lilliput, purple	Toxolasma lividus		BOVA
060007	SE	П	Mussel, slippershell	Alasmidonta viridis		BOVA
070118	FSSE	П	<u>Crayfish, Big</u> <u>Sandy</u>	Cambarus veteranus		BOVA
040096	ST	Ι	Falcon, peregrine	Falco peregrinus		BOVA
040293	ST	Ι	<u>Shrike,</u> loggerhead	Lanius ludovicianus		BOVA,HU6
040385	ST	I	<u>Sparrow,</u> <u>Bachman's</u>	Aimophila aestivalis		BOVA
010352	ST	П	<u>Darter.</u> greenfin	Etheostoma chlorobranchium		BOVA
010342	ST	П	<u>Darter,</u> longhead	Percina macrocephala	<u>Yes</u>	TEWaters,BOVA,HU6
040093	FSST	П	Eagle, bald	Haliaeetus leucocephalus		BOVA,HU6
060083	FCST	П	<u>Pearlymussel,</u> slabside	Lexingtonia dolabelloides	<u>Yes</u>	TEWaters,BOVA,HU6
060069	FSST	Ш	Riversnail, spiny	Io fluvialis		BOVA
060086	ST	III	Sandshell, black	Ligumia recta	Yes	TEWaters,HU6
040292	ST		Shrike, migrant loggerhead	Lanius ludovicianus migrans		BOVA
060146	FS	Π	Bean, rayed	Villosa fabalis		BOVA
060121	FC	п	<u>Kidneyshell,</u> <u>fluted</u>	Ptychobranchus subtentum		BOVA,HU6
100248	FS	I	<u>Fritillary,</u> <u>regal</u>	Speyeria idalia idalia		BOVA,HU6
010341	FS	П	Logperch, blotchside	Percina burtoni		BOVA
060050	FS	П	<u>Pigtoe.</u> Tennessee	Fusconaia barnesiana		BOVA,HU6
070010	FS	III	Amphipod. James Cave	Stygobromus abditus		BOVA
100001	FS	IV	<u>fritillary.</u> <u>Diana</u>	Speyeria diana		BOVA

020020	CC	П	Hellbender, eastern	Cryptobranchus alleganiensis alleganiensis	<u>Yes</u>	Collections,BOVA,HU6
030012	CC	IV	<u>Rattlesnake,</u> <u>timber</u>	Crotalus horridus		BOVA,HU6
040372		I	<u>Crossbill,</u> <u>red</u>	Loxia curvirostra		BOVA
040225		I	Sapsucker, yellow- bellied	Sphyrapicus varius		BOVA,HU6
040319		I	Warbler, black- throated green	Dendroica virens		BOVA
040306		Ι	Warbler, golden- winged	Vermivora chrysoptera		BOVA,HU6

To view All 468 species View 468

* FE=Federal Endangered; FT=Federal Threatened; SE=State Endangered; ST=State Threatened; FP=Federal Proposed; FC=Federal Candidate; FS=Federal Species of Concern; SC=State Candidate; CC=Collection Concern; SS=State Special Concern (obsolete January 1, 2011)

** I=VA Wildlife Action Plan - Tier I - Critical Conservation Need; II=VA Wildlife Action Plan - Tier II -Very High Conservation Need; III=VA Wildlife Action Plan - Tier III - High Conservation Need; IV=VA Wildlife Action Plan - Tier IV - Moderate Conservation Need

Anadromous Fish Use Streams

N/A

Colonial Water Bird Survey

N/A

Threatened and Endangered Waters (2 Reach es)

> View Map of All Threatened and Endangered Waters

Stream Name T&E Waters Species

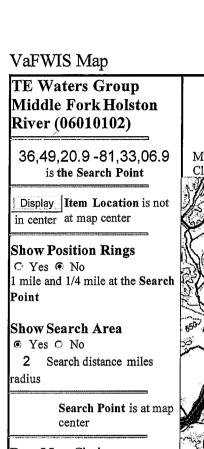
·	Highest TE*				le, Status [*] , Tie & Scientific Na		View Map
	·	010342	ST	П	Darter, longhead	Percina macrocephala	
		060036	FESE	I	Riffleshell, tan	Epioblasma florentina walkeri	
Middle Fork Holston River (06010102)	FESE	060083	FCST	П	Pearlymussel, slabside	Lexingtonia dolabelloides	<u>Yes</u>
(00010102)		060086	ST	Ш	Sandshell, black	Ligumia recta	
		060122	FESE	I	Rabbitsfoot, rough	Quadrula cylindrica strigillata	
Middle Fork		060086	ST	III	Sandshell, black	Ligumia recta	
Holston River (06010102)	FESE	060122	FESE	I	Rabbitsfoot, rough	Quadrula cylindrica strigillata	Yes

Managed Trout Streams

(2 records) (Click on Stream Name to view complete reach history)

View Map of All Trout Stream Surveys

Reach ID	Stream Name	Class	Brook Trout	Brown Trout	Rainbow Trout	View Map
03LRL- 01	Laurel Spring Creek	Stockable			·	<u>Yes</u>
II I	Middle Fork Holston River	Stockable			Y	Yes


Bald Eagle Concentration Areas and Roosts

N/A

(1 names) Public Holdings:

Name	Agency	Level
Jefferson National Forest	U.S. Forest Service	Federal

audit no. 324000 2/2/2011 7:46:51 AM Virginia Fish and Wildlife Information Service © 1998-2010 Commonwealth of Virginia Department of Game and Inland Fisheries

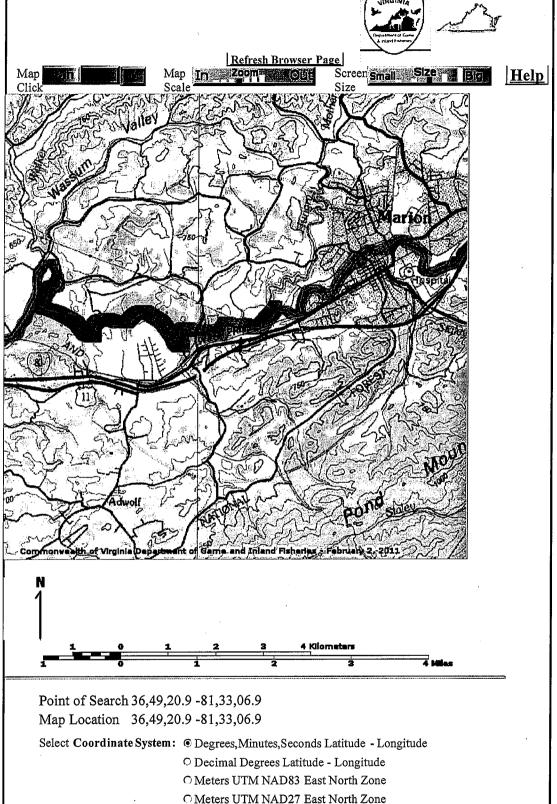
Base Map Choices Topography

Map Overlay Choices
Current List: Search,
Observation

Map Overlay Legend

T & E Waters

Federal


Selected Federal

State

Selected State

2 mile radius Search Area

Data Collection Site

details)

Base Map source: USGS 1:100,000 topographic maps (see Microsoft terraserver-usa.com for

Map projection is UTM Zone 17 NAD 1983 with left 445994 and top 4080140. Pixel size is 16 meters. Coordinates displayed are Degrees, Minutes, Seconds North and West Map

VaFWIS Map

is currently displayed as 600 columns by 600 rows for a total of 360000 pixles. The map display represents 9600 meters east to west by 9600 meters north to south for a total of 92.1 square kilometers. The map display represents 31501 feet east to west by 31501 feet north to south for a total of 35.5 square miles.

Topographic maps and Black and white aerial photography for year 1990+-are from the United States Department of the Interior, United States Geological Survey. Color aerial photography aquired 2002 is from Virginia Base Mapping Program, Virginia Geographic Information Network.

Shaded topographic maps are from TOPO! ©2006 National Geographic http://www.national.geographic.com/topo

All other map products are from the Commonwealth of Virginia Department of Game and Inland Fisheries.

map assembled 2011-02-02 07:45:04 (qa/qc July 20, 2010 10:15 - tn=324000.0 dist=3218 I)

| <u>DGIF</u> | <u>Credits</u> | <u>Disclaimer</u> | Contact <u>shirl.dressler@dgif.virginia.gov</u> | Please view our <u>privacy policy</u> | © Copyright: 1998-2011 Commonwealth of Virginia Department of Game and Inland Fisheries

Wyatt, Frederick (DEQ)

From:

gis@timmons.com

Sent:

To:

Thursday, February 03, 2011 1:27 PM nhwebreview (DCR); Wyatt, Frederick (DEQ)
Town of Marion Wastewater Treatment Plant - frederick.wyatt@deq.virginia.gov

Subject: Attachments:

DCR_NH_REPORT.pdf

Thank you for submitting your project to DCR Natural Heritage. Attached is an overview of the results and potential conflicts.

David A. Johnson

DEPARTMENT OF CONSERVATION AND RECREATION COMMONWEALTH of VIRGINIA

heritage resources from the area indicated for this project. Natural heritage resources are defined as the habitat of rare, threatened, or endangered plant and animal species, The project mapped as part of this report has been searched against the Department of Conservation and Recreation's Biotics Data System for occurrences of natural unique or exemplary natural communities, and significant geologic formations.

According to the information currently in Biotics files, NATURAL HERITAGE RESOURCES HAVE BEEN DOCUMENTED within two miles of the indicated project boundaries

You have submitted this project to DCR for a more detailed review for potential impacts to natural heritage resources. DCR will review the submitted project to identify the specific natural heritage resources in the vicinity of the proposed project. Using the expertise of our biologists, DCR will evaluate whether your specific project is minimize and/or mitigate these impacts. If the potential negative impacts are to species that are state- or federally-listed as threatened or endangered, DCR will also Department of Agriculture and Consumer Services for state-listed plants and insects, and the United States Fish and Wildlife Service for federally listed plants and likely to impact these resources, and if so how. DCR's response will indicate whether any negative impacts are likely and, if so, make recommendations to avoid, recommend coordination with the appropriate regulatory agencies: the Virginia Department of Game and Inland Fisheries for state-listed animals, the Virginia animals. If your project is expected to have positive impacts we will report those to you with recommendations for enhancing these benefits.

Please allow up to 30 days for a response.

that you believe will help us better assess your project's potential impacts, you may send that information to us. Please refer to the project Title (from the first page of this information can help us make a more accurate and detailed assessment of a project's potential impacts to natural heritage resources. If you have additional information We will review the project based on the information you included in the Project Info submittal form, which is included in the report that follows. Often additional report) and include this pdf file with any additional information you send us.

Thank you for submitting your project for review to the Virginia Natural Heritage Program through the NH Data Explorer. Should you have any questions or concerns about DCR, the Data Explorer, or this report, please contact the Natural Heritage Project Review Unit at 804-371-2708. **WebID:** W634323364198437500

Client Project Number: VA0086304

PROJECT INFORMATION

CONSERVING VIRGINIA'S NATURAL & RECREATIONAL RESOURCES

TITLE: Town of Marion Wastewater Treatment Plant

DESCRIPTION: Reissuance of 3.4 MGD VPDES Permit for existing dishcarge

Existing 3.4 MGD discharge into the Middle Fork Holston River **EXISTING SITE CONDITIONS:**

QUADRANGLES: MARION

COUNTIES: Smyth

Latitude/Longitude (DMS): 364921/813307

Acreage: 1

Comments: Complete mix of existing 3.4 MGD discharge into the Middle Fork Holston calculated to be at 450 ft. at a 7Q10 of 11.9 MGD. No proposed permit modifications or plant expansion at this reissuance.

REQUESTOR INFORMATION

Priority: No Tier Level: 2

Tax ID:

Contact Name: Frederick M Wyatt

Company Name: DEQ-Southwest Regional Office

Address: PO Box 1688

City: Abingdon State: VA

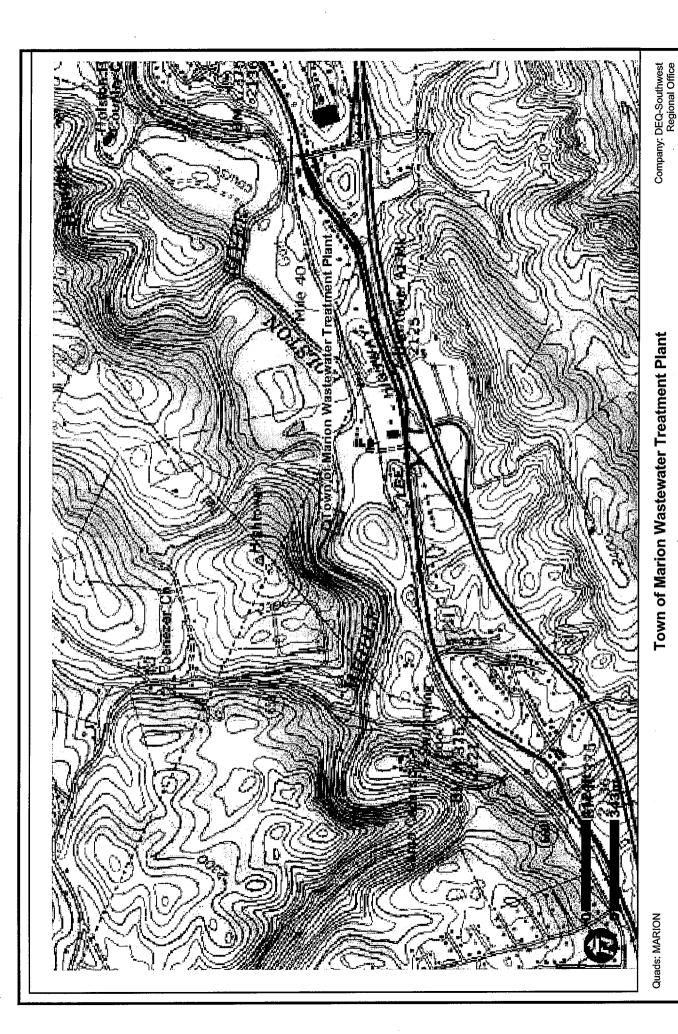
Email: frederick.wyatt@deq.virginia.gov Fax: 276-676-4899 **Phone:** 276-676-4810

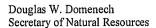
Zip: 24212

9
ġ
ď
g
ሚ

Listed Species Presence							
	뉟	ź	불	륃	료	불	ź
Acreage					85	431	474
Brank						B4	B3
Site Type	GLNHR	GLNHR	GLNHR	GLNHR	SCU	Conservation Site	Conservation Site
Conservation Site Name					MIDDLE FORK HOLSTON RIVER - SULPHUR SPRING CREEK SCU	McMULLIN	CRAB 81

l Heritage Program
Natura
Recreation,
and
Conservation and Re
nt of
Virginia Departmer


, etc	-					EO Ivalin last obsidate precision		
Tennessee Pigtoe barnesiana		6263	S2	coc	sc	ċН	1988-09-01	S
Appalachian Bugbane	Cimicifuga rubifolia	63	S2			I	1875-	M
Heart-leaved Plantain			SH			I	1893-	×
Black Sculpin (S2			H.5	1985-12-17	S
Tennessee Clubshell	Pleurobema oviforme		S2S3	soc		O	1998-09-16	Ø
Sp. Sc. Sai T	sculpin (ulpin Cottus baileyi ee Pleurobema oviforme	O N	υ 🕺	O N	G4Q S2 6 G2G3 S2S3 SOC	G4Q S2 64Q S2 8 G2G3 S2S3 SOC	G4 SH H 1893- G4Q S2 H? 1985-12-17 e G2G3 S2S3 SOC C 1998-09-16


~
'n
⋍.
\sim
_
က
~
2
ਹ
ā
≖
ā
ä
≅
O
_
ᇁ
ភ
×
и
ၿ
ベ
뜨

DIABASE	INFO	SERIES	PRIORITY
ON	Beekmantown Group	Cambrian and Lower Ordovician Carbonates	
NO Mocassin Formation, Bays B, Unit A	Mocassin Formation, Bays Formation, Unit C, Unit B, Unit A	Formation, Unit C, Unit Middle Ordovician Limestones	

Lat/Long: 364921/813307

Counties: Smyth

David A. Johnson Director

COMMONWEALTH of VIRGINIA

DEPARTMENT OF CONSERVATION AND RECREATION

Division of Natural Heritage 217 Governor Street Richmond, Virginia 23219-2010 (804) 786-7951

February 28, 2011

Fred Wyatt DEQ-SRO P.O. Box 1688 Abingdon, VA 24212

Re: VA0086304, Town of Marion Wastewater Treatment Plant

Dear Mr. Wyatt:

The Department of Conservation and Recreation's Division of Natural Heritage (DCR) has searched its Biotics Data System for occurrences of natural heritage resources from the area outlined on the submitted map. Natural heritage resources are defined as the habitat of rare, threatened, or endangered plant and animal species, unique or exemplary natural communities, and significant geologic formations.

According to the information currently in our files, the Middle Fork Holston River – Sulphur Spring Creek Stream Conservation Unit is located upstream from the project site. Stream Conservation Units (SCUs) identify stream reaches that contain aquatic natural heritage resources, including 2 miles upstream and 1 mile downstream of documented occurrences, and all tributaries within this reach. SCUs are also given a biodiversity significance ranking based on the rarity, quality, and number of element occurrences they contain. The Middle Fork Holston River – Sulphur Spring Creek SCU has been given a biodiversity ranking of B2, which represents a site of very high significance. Natural heritage resources associated with this site are:

Cottus baileyi	Black sculpin	G4Q/S2/NL/NL
Epioblasma florentina walkeri	Tan riffleshell	G1T1/S1/LE/LE
Fusconaia barnesiana	Tennessee pigtoe	G2G3/S2/SOC/NL
Lasmigona holstonia	Tennessee heelsplitter	G3/S1/NL/LE
Lexingtonia dolabelloides	Slabside pearlymussel	G2/S2/SOC/LT
Pleurobema oviforme	Tennessee clubshell	G2G3/S2S3/SOC/NL
Ptychobranchus subtentum	Fluted kidneyshell	G2/S2/SOC/NL

In addition, Middle Fork Holston River 1, which has been designated by the Virginia Department of Game and Inland Fisheries (VDGIF) as a "Threatened and Endangered Species Water", is within the project site. The species associated with this T & E Water are Tan riffleshell, Slabside pearlymussel, Purple bean (Villosa perpurpurea, G1/S1/LE/LE), Rough rabbits foot (Quadrula cylindrical strigillata, G3T2/S2/LE/LE), Little-winged pearlymussel (Pegias fabula, G1/S1/LE/LE), Turquoise shiner (Erimonax monachus, G2/S1/LT/LT) and Black sandshell (Ligumia recta, G5/S2/NL/LT).

Due to the legal status of many of the natural heritage resources associated with this site, DCR recommends coordination with the U.S. Fish and Wildlife Service (USFWS) and the VDGIF to ensure compliance with protected species legislation. DCR supports the use of uv/ozone for disinfection and utilization of new technologies as they become available to improve water quality.

Our files do not indicate the presence of any State Natural Area Preserves under DCR's jurisdiction in the project vicinity.

Under a Memorandum of Agreement established between the Virginia Department of Agriculture and Consumer Services (VDACS) and the Virginia Department of Conservation and Recreation (DCR), DCR represents VDACS in comments regarding potential impacts on state-listed threatened and endangered plant and insect species. The current activity will not affect any documented state-listed plants or insects.

New and updated information is continually added to Biotics. Please contact DCR for an update on this natural heritage information if a significant amount of time passes before it is utilized.

The Virginia Department of Game and Inland Fisheries maintains a database of wildlife locations, including threatened and endangered species, trout streams, and anadromous fish waters that may contain information not documented in this letter. Their database may be accessed from http://vafwis.org/fwis/ or contact Shirl Dressler at (804) 367-6913.

Should you have any questions or concerns, feel free to contact me at 804-371-2708. Thank you for the opportunity to comment on this project.

Sincerely,

S. Rene' Hypes

Project Review Coordinator

Rem' Hy

CC: Tylan Dean, USFWS Ernie Aschenbach, VDGIF

Wyatt, Frederick (DEQ)

From:

Frazier, Teresa (DEQ)

Sent:

Wednesday, February 02, 2011 10:14 AM

To:

Wyatt, Frederick (DEQ)

Subject:

Marion WWTP TMDL fact sheets

2010 FS MFHMarion.pdf Attachments:

Attached is the fact sheet for Middle Fork Holston at Marion the segment that the WWTP is on is VAS-O04R MFH01A00.

Aquatic Life Use in the segment has observed effects for DDT and Total Phosphorus.

Fish Consumption Use in the segment has observed effects for Mercury.

Teresa Frazíer

DEQ Southwest Regional Office | 276.676.4805 | Teresa.Frazier@deq.virginia.gov

Go Green! Think about our environment before printing this email.

2010 Impaired Waters

Categories 4 and 5

Tennessee and Big Sandy River Basins

Cause Group Code: O03R-01-BAC Middle Fork Holston River

Location: This segment extends from the headwaters downstream to the Neff community, Bear Creek from the confluence with the Middle Fork Holston River upstream 2.4 miles, and Staley Creek from the Middle Fork Holston River confluence upstream to the National Forest.

City / County: Smyth Co.

Washington Co.

Wythe Co.

Use(s):

Recreation

Cause(s) /

Escherichia coli / 5A VA Category:

Fecal Coliform / 5A

The AWQM station, 6CMFH 53.36 had a 31% exceedence of the bacteria water quality standard, 6CMFH045.72, had a 22% exceedence and an additional station at 6CMFH040.67 had a 58% exceedence of the bacteria standard. Station 6CMFH033.40 had a 48% exceedence of the E.coli water quality standard and 6CMFH013.21 had a 25% exceedence of the E.coli water quality standard. 6CBER000.17 had a 33% exceedence of the E. coli water quality standard.

Assessment Unit / Water Name / Description Cat	use Category	/ Name	Cycle First Listed	TMDL Schedule	Size
VAS-003R_BER01A02 / Bear Creek / Middle Fork Holston River tributary flows south, west of Atkins, WQS Section 5c.	5A	Escherichia coli	2010	2022	5.57
VAS-O03R_MFH01A00 / Middle Fork Holston River / From Marion raw water intake, near Mt Carmel, downstream to Hungry Mother Creek confluence, including Town of Marion, section 5.	5A	Escherichia coli	2010	2014	5.44
VAS-O03R_MFH02A00 / Middle Fork Holston River / From Marion raw water intake, 45.83, through Atkins to the Snavely Creek confluence, WQS Section 5c, DGIF vi.	5A	Escherichia coli	2010	2014	5.17
VAS-O03R_MFH05A04 / Middle Fork Holston River / Mainstem headwaters upstream of Dutton Branch confluence at Groseclose, WQS Section 5, DGIF vi; originates in Kinser Valley in Wythe County.	5A	Escherichia coli	2010	2022	3.26
VAS-O03R_STA01A02 / Staley Creek / Middle Fork Holston River tributary from I 81 upstream to National Forest, including Currin Valley, WQS Section 5, DGIF vi.	5A	Escherichia coli	2010	2022	5.85
VAS-O03R_STA01B10 / Staley Creek / Middle Fork Holston River tributary on the west side of Marion, upstream to I 81, WQS Section 5, DGIF vi.	5A	Escherichia coli	2010	2022	1.00
VAS-O04R_MFH01A00 / Middle Fork Holston River / Mainstem Middle Fork Holston River from Hungry Mother Creek confluence downstream to Sulfur Spring Creek confluence, section 5.	5A	Escherichia coli	2002	2014	12.59
VAS-O05R_MFH03A00 / Middle Fork Holston River / Mainstem Middle Fork Holston River from just downstream of Neff to Edmondson Dam, WQS Section 5.	5A	Escherichia coli	2002	2014	4.18
VAS-O05R_XDY01A08 / Middle Fork Holston tributary / Enters at SR 803 crossing near the USGS gaging station, WQS Section 5.	5A	Escherichia coli	2008	2020	0.79
Middle Fork Holston River				eservoir Acres)	River (Miles)
Escherichia coli - Total I	mpaired Size	by Water Type:			43.85

2010 Impaired Waters

Categories 4 and 5

Tennessee and Big Sandy River Basins

Assessment Unit / Water Name / Description Cau	ıse Category	/ Name	Cycle First Listed	TMDL Schedule	Size
VAS-O03R_MFH01A00 / Middle Fork Holston River / From Marion raw water intake, near Mt Carmel, downstream to Hungry Mother Creek confluence, including Town of Marion, section 5.	5A	Fecal Coliform	2002	2014	5.44
VAS-003R_MFH02A00 / Middle Fork Holston River / From Marion raw water intake, 45.83, through Atkins to the Snavely Creek confluence, WQS Section 5c, DGIF vi.	5A	Fecal Coliform	2002	2014	5.17
VAS-003R_MFH04A98 / Middle Fork Holston River / From Dutton Branch confluence at Groseclose downstream to the at the Snavely Branch confluence, WQS Section 5, DGIF vi.	5A	Fecal Coliform	2002	2014	4.21
VAS-005R_MFH04A00 / Middle Fork Holston River / Mainstem Middle Fork Holston River from Sulphur Springs Creek downstream to Rt 91 bridge confluence, WQS Section 5.	5A	Fecal Coliform	2002	2014	9.17
VAS-005R_MFH05A04 / Middle Fork Holston River / Mainstem Middle Fork Holston River from Edmondson Dam upstream to Rt 91 bridge, downstream to Rt 91 bridge confluence, WQS Section 5a.	5A	Fecal Coliform	2002	2014	3.65
Middle Fork Holston River			Re (,	River (Miles)	
Fecal Coliform - Total Impaired Size by Water Type:					27.64

Sources:

Rural (Residential Areas)

Source Unknown

Unrestricted Cattle Access

Online Services | Commonwealth Sites | Help | Governor

Search Virginia.gov

Search for Approved TMDL Reports

To return all records, simply click the Search button without entering any criteria.

Watershed ID	example searches: B17R, b, 17, r				
Waterbody Name	Middle Fork Holston example searches: Opequon Creek, OPEQ				
City/County	Smyth	example searches: Albemarle, ALB, albem			
Major River Basin	Holston River Basin				
Pollutant					
EPA Approval Date (Year)					
SWCB Approval Date (Year) <u> </u>				
Search Clear form					

Approved TMDL reports

Displaying 1 result.

TMDL Project	Basin	City/County	Watershed ID	Pollutant (s)	Comment document	Final report	EPA approval date	SWCB approval date	Comments
Middle Fork Holston River Watershed	Holston River	Washington, Smyth	003R, 004R, 005R	Bacteria Sediment	-	Final report	04/12/2010 EPA rationale	12/09/2010	•

Templ:DEQTemplate_one | Editable:false | StartFldr:/tmdl/ | CurrentFilename:homepage.html;

Table 7.11. Expansion matrix for bacteria WLA in the Middle Fork Holston River (VAS-004R-01) watershed.

Permit No	Facility Name	Design Flow (MGD)	Effluent Limit (cfu/100ml)	Wasteload Allocation (cfu/yr)
VA0086304	Marion WWTP	3.400	126	5.92E+12
8	Domestic Sewage General Permits	0.008	126	1.39E+10
Point	Source Future Growth Allocation (5x)	17.040	126	2.97E+13
			Total	3.56E+13

Table 7.12. Annual nonpoint source fecal coliform and *E. coli* loads for existing conditions and final allocation along with corresponding reductions in Middle Fork Holston River (VAS-O04R-01) impairment.

	Fecal Coliform		E. (
Source	Existing Condition Load (cfu/yr)	TMDL Allocation Load (cfu/yr)	Existing Condition Load (cfu/yr)	TMDL Allocation Load (cfu/yr)	Scenario Reduction (%)
Direct					
Straight Pipes	3.84E+13	0.00E+00	3.02E+12	0.00E+00	100
Livestock	8.85E+13	1.77E+12	6.50E+12	1.78E+11	98
Wildlife	5.33E+13	5.33E+13	4.08E+12	4.08E+12	0
Total	1.80E+14	5.51E+13	1.36E+13	4.26E+12	69
Land-based					
Residential	2.21E+15	4.42E+13	1.25E+14	3.43E+12	98
Cropland	1.27E+14	2.54E+12	9.06E+12	2.49E+11	98
Pasture	8.49E+16	1.70E+15	3.58E+15	9.83E+13	98
Forest	2.36E+14	2.36E+14	1.60E+13	1.60E+13	0
Total	8.75E+16	1.98E+15	3.73E+15	1.18E+14	98

¹ Loads derived from fecal coliform loads using equation 7.2

expression of sediment loadings in the Middle Fork Holston River TMDL is the annual average loading. Table 7.27 shows the total load, wasteload allocations, and margin of safety for Lower Middle Fork Holston River expressed as an average annual load. No sediment reductions to the point sources in Lower Middle Fork Holston River are required. The recommended allocations for each nonpoint source are provided in Table 7.26. Overall, the sediment load in the Lower Middle Fork Holston River watershed must be reduced by 60% in order to meet the established TMDL endpoint.

Table 7.27. Yearly sediment loads (T/yr) modeled after TMDL allocation in Lower Middle Fork Holston River impairment.

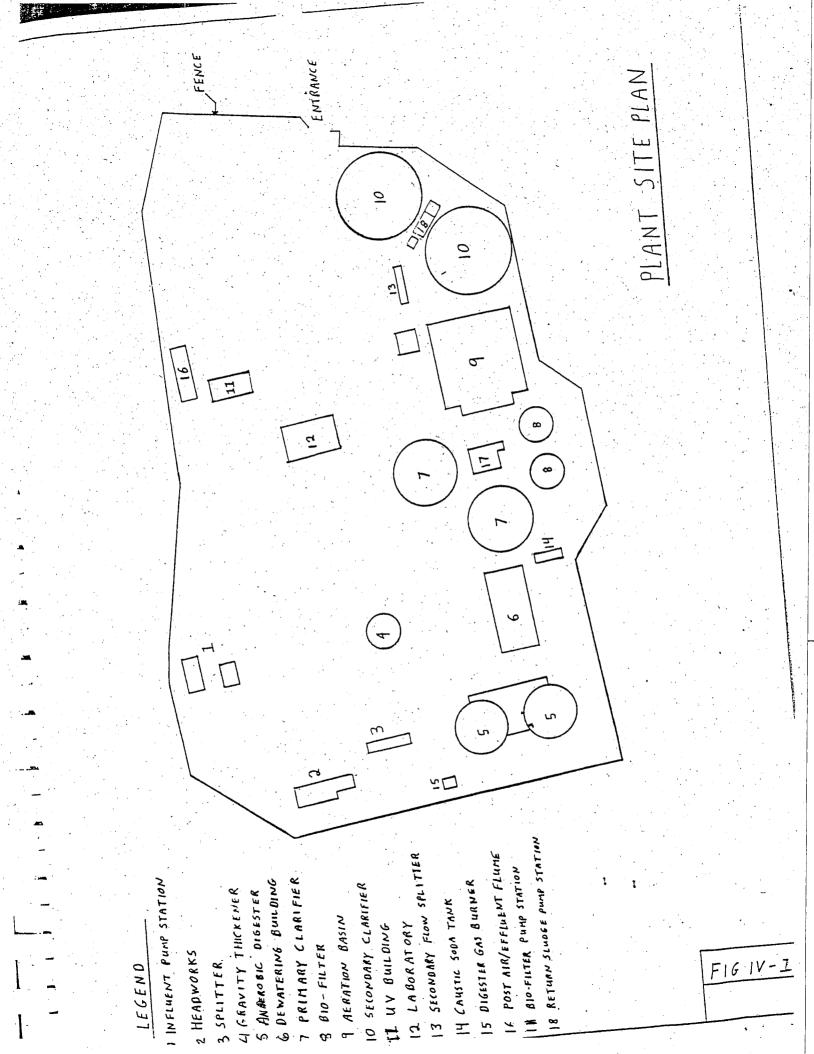
WLA	LA	MOS	TMDL
(T/yr)	(T/yr)	(T/yr)	(T/yr)
100.4	1,448.8	198.0	

In order to comply with current USEPA guidance (USEPA, 2007), the Middle Fork Holston River sediment TMDL was also expressed as a daily load by evaluating the variability and distribution of simulated loads (Table 7.28). The following formula from USEPA's *Technical Support Document for Water Quality-Based Toxics Control* (USEPA, 1991) and USEPA's draft *Options for Expressing Daily Loads in TMDLs* (USEPA, 2007) was used to calculate the daily expression of the TMDL:

$$MDL = LTA * \exp(Z_p \sigma_v - 0.5 \sigma_v^2)$$
 [7.2]

where.

MDL = maximum daily load,


LTA = long term average, which in this case is the average daily load calculated as the average annual load divided by 365,

 $Z_p = p^{\text{th}}$ percentage point of the standard normal distribution (95 th percentile was used),

$$\sigma_{v} = \sqrt{\ln(CV^2 + 1)}$$
 , and

CV = coefficient of variation (estimated at 0.6).

The total maximum daily load was determined from Equation 7.2 using a 95 th percentile, a CV of 0.6, and a long term average of 4.79 T/d. It should be noted that the maximum daily load expression represents extreme conditions (with a 5% frequency of occurrence), and routine loadings of this level would not meet average annual loadings that are necessary to restore aquatic life health.

ATTACHMENT A

Marion Regional Sewage Treatment Works
Unit Operations Design Parameters

Hydraulic Loading

Average flow = 3.4 MGD Peak flow = 10 MGD

Organic Loading

BOD₆ 248 mg/l

Influent Pump Station

Three (3) variable flow, constant speed pumps provided

GPM TDH RPM BHP EFF.	<u>Min.</u> 1375 46 1800 44.4 36	<u>Max.</u> 3800 53.5 1800 64.2 80	(each pump)
EFF.	30		

Screening Devices

Manually cleaned bar screen No. 1

location ahead of influent pumps

channel width 3.5 ft. bar spacing 2.5 in.

bar size 3/8 in. thick x $2\frac{1}{2}$ in. wide

Manually cleaned bar screen No. 2

location headworks channel width 2.5 ft. bar spacing 0.5 in.

bar size 3/8 in. thick x $2\frac{1}{2}$ in. wide

Mechanical screen

self-cleaning filter screen channel width 2.0 ft.

channel width 2.0 ft.

angle-of-inclination 75° from horizontal screen spacing 0.5 in. max. hydraulic capacity 11.0 MGD conveyor capacity 2.5 cu.yd./hr.

Grit Removal Facilities

Mechanically cleaned unit aerated chamber aeration capacity HRT @ Q avg. channel dimensions grit collection type

2-3 SCFM/ft. length at 4.9 psig 3.9 minutes 6 ft. x 35 ft. x 8.5 ft. SWD chain and bucket

Manually cleaned unit
aerated chamber
aeration capacity
channel dimensions

same same

Primary Clarifiers

number of units diameter depth WOR @ Q avg. SOR @ Q peak

2 55 ft. 10 ft. 9,839 gpd/ft. 716 gpd/ft.² 2,105 gpd/ft.²

Roughing Filters

Activated Biofilters (ABF) (bid option A) number of units hydraulic loading @ Q avg. and 100% RAS recycle organic loading @ Q avg. and 100% RAS recycle dosing

171 MG/acre/day (2.73 gpm/ft.2)

distribution equipment

media media dimensions 8,884 lb. BOD₅/acre/day (204 lb/1000 cu.ft.) four (4) variable speed, V-belt drive, suction lift sewage pumps (3,333 gpm @ 46.5 ft. TDH, 925 rpm, 50 hp motor) header/lateral w/non-plugging, curved plate type distributors horizontal racks of redwood 24 ft. x 36 ft. x 14 ft. deep

Aeration Basins

number of units basin dimensions total volume HRT @ Q avg. aeration equipment

chemical feed

4
20 ft. x 80 ft. x 18 ft. SWD
861,696 gallons
6.1 hrs.
three (3) centrifugal blowers, 1,785 SCFM,
100 hp
max. SOTR = 19,465 lb/day
fixed fine bubble diffusers
two (2) liquid caustic soda feeders
20 gal/hr. capacity per feeder

4,000 gallon caustic day tank

Secondary Clarifiers

number of units
diameter
depth
WOR @ Q avg.
SOR @ Q avg.
SOR @ Q peak
solids loading @ Q avg.
solids loading @ Q peak

2 80 ft. 12 ft. 7,842 gpd/ft. 338 gpd/ft.² 995 gpd/ft.² 0.7 gpd/ft.²/hr. 1.4 lb/ft.²/hr.

Disinfection

min. design dosage type of assemblies lamp arrangement 50,000 microwatts-sec/cm² open channel, submerged, vertical 2 parallel channels 4 banks/channel 2 modules/bank 28 lamps/module 224 lamps/channel 3.0 in. lamp spacing

lamp specifications

90% min. light emittance at 253.7 nm 58 in. min. arc length 190 microwatts/cm² output at 1.0 m 7500 hrs. min. rated life

measurement equipment

one (1) uv intensity meter per channel one (1) elapsed time meter per bank

control equipment

automatic control using flow pacing by effluent flow meter and manual control

spare parts

10% of total bulbs per assembly 10% of total quartz tubes per assembly 5% of total ballasts per assembly one (1) uv intensity sensor

maintenance equipment

one (1) portable cleaning system

contact time

11.4 seconds

Postaeration

number of units type basin dimensions aeration capacity

2 diffused aeration 4 ft. x 43 ft. x 10 ft. SWD 55 SCFM per basin

Flow Measurement

type number of units locations

capacity

type number of units location capacity

Parshall flume

3 2 @ influent flow splitter 1 @ postaeration effluent 0.23 - 11.0 MGD (12 in. throat)

Palmer - Bowlus flume 2 secondary flow splitter 0.72 - 5.5 MGD

Sludge Return/Waste Pumps

number of units type

capacity

2 plunger positive displacement w/variable output 61.2 gpm @ 160 ft. TDH at max. stroke

Gravity Sludge Thickener

number of units basin dimensions volume design detention time

1 30 ft. diameter x 10.25 ft. SWD 59,500 gallons 26 hours

Anaerobic Digesters

number of units digester dimensions volume design detention time volatile solids loading mixing 2 (1 primary, 1 secondary)
50 ft. diameter x 25 ft. SWD
384,600 gallons each
19 days per unit
118 lb vs/1000 ft.³
both units are completely mixed using one (1)
screw-centrifugal, V-belt drive pump (150 gpm @ 12.6 ft. TDH)

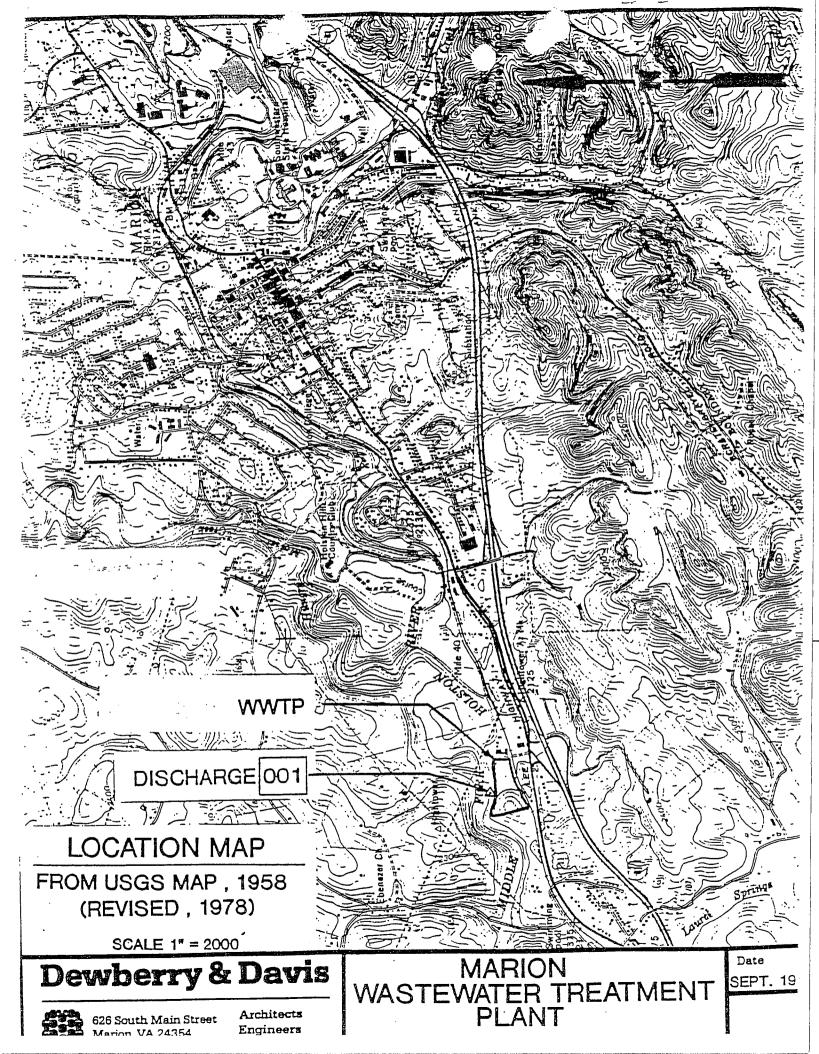
gas mixing system (perth type) on primary unit

floating digester gas or oil-fired boiler with heat exchanger secondary digester can function as primary

covers heating other

Sludge Dewatering

method number of units capacity


feed pump

belt filter press

44 gpm @ 5% total solids w/output of 22% total solids dewatered cake one (1) two-stage, progressing cavity, positive displacement, variable speed pump (30-90 gpm @ 88 ft. TDH, 292 rpm max)

<u>Other</u>

non-potable water pumps and system, froth control pumps, polymer feed system for belt press, outfall, and fully-equipped laboratory.

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION Water Quality Assessments and Planning 629 E. Main Street P.O. Box 10009 Richmond, Virginia 23240

SUBJECT:

Flow Frequency Determination

Marion WWTP - VA#0086304

TO:

Fred Wyatt, SWRO

FROM:

Paul E. Herman, P.E., WQAP

DATE:

January 23, 2001

COPIES:

Ron Gregory, Charles Martin, File

This memo supersedes my February 29, 1996, memo to you concerning the subject VPDES. This memo includes updated flow frequency data.

The Marion WWTP discharges to the M.F. Holston River near Marion, VA. Stream flow frequencies are required at this site for use by the permit writer in developing effluent limitations for the VPDES permit.

The USGS operated a continuous record gage on the M.F. Holston River at Seven Mile Ford, VA (#03474000) from 1942 to 1981, 1987 to 1989, and 1996 to present. The gage is located at the U.S. Route 11 bridge in Seven Mile Ford, VA. The flow frequencies for the gage and the discharge point are presented below. The values at the discharge point were determined by drainage area proportions and do not address any withdrawals, discharges, or springs lying between the gage and the discharge point.

M.F. Holston River at Seven Mile Ford, VA (#03474000):

Drainage Area = 132 mi²

1010 = 22 cfs

High Flow 1Q10 = 28 cfs

7Q10 = 27 cfs

High Flow 7Q10 = 32 cfs

30Q5 = 30 cfs

HM = 76 cfs

Annual Average = 163 cfs

M.F. Holston River at discharge point:

Drainage Area = 101.87 mi²

1010 = 17 cfs (11 mgd),

High Flow 1Q10 = 22 cfs (14.2 mgd)

7Q10 = 21 cfs (13.6 mgd)

High Flow 7Q10 = 25 cfs (16.2 mgd)

30Q5 = 23 cfs (14.9 mgd)

+ HM = 59 cfs (38.1 mgd)

Annual Average = 126 cfs (81.4 mgd)

The high flow months are December through May. If you have any questions concerning this analysis, please let me know.

1.7 MGD water treatment Plant withdrawal must be subtracted from these values.

Corrected Values Are:

3095= 13.2 MGD

1010 = 9.3 MGD High Flow 1010 = 12.5 MGD 7010 = 11.9 MGD High Flow 7010 = 14.5 MGD

100 = 11.9 MGD 3095 = 13.2 MGD 3000 = 36.4 MGD 3000 = 36.4 MGD

Table 1. TMP Summary Test Results Town of Marion WWTP VPDES Permit No. VA0086304 07/12/06 - 07/11/11 Report Due by October 10th each year NOEC Criteria is 16% or TU_c 6.25

			T	T	· · · · · · · · · · · · · · · · · · ·		1
TEST DATE		TEST TYPE/ORGANISM	LC ₅₀	NOEC	% Survival	NOTES	Lab
08/01/06-08/08/06 Received 09/11/06		Chronic P. promelas	NA	100% S 60.8% G	100%	Pass	Olver
08/02/06-08/04/06 Received 09/11/06	AN-1	Acute P. promelas	>100%	NA	100%	Pass	Olver
08/01/06-08/06/06 Received 09/11/06		Chronic <u>C</u> . <u>dubia</u>	NA	100% S&R	100%	Pass	Olver
08/02/06-08/04/06 Received 09/11/06		Acute <u>C</u> . <u>dubia</u>	>100%	NA	100%	Pass	Olver
08/27/07-09/03/07 Received 10/11/07		Chronic P. promelas	NA	100% S&G	97.5%	Pass	Olver
08/29/07-08/31/07 Received 10/11/07	AN-2	Acute P. promelas	>100%	NA	100%	Pass	Olver
08/27/07-09/02/07 Received 10/11/07		Chronic <u>C</u> . <u>dubia</u>	NA	100% S 60.8% R	90%	Pass	Olver
08/29/07-08/31/07 Received 10/11/07		Acute <u>C</u> . <u>dubia</u>	>100%	NA	100%	Pass	Olver
09/02/08-09/09/08 Received 10/10/08		Chronic P. promelas	NA .	100% S 22.5%G	100%	Pass	Olver
07/30/08-08/01/08 Received 10/10/08	AN-3	Acute P. promelas	>100%	NA	80%	Pass	Olver
09/02/08-09/09/08 Received 10/10/08		Chronic <u>C</u> . <u>dubia</u>	NA	100% S 100% R	100%	Pass	Olver
07/30/08-08/01/08 Received 10/10/08		Acute <u>C</u> . <u>dubia</u>	>100%	NA	95%	Pass	Olver

Table 1.

TMP Summary Test Results

Town of Marion WWTP

VPDES Permit No. VA0086304

07/12/06 - 07/11/11 Report Due by October 10th each year NOEC Criteria is 16% or TU_c 6.25

Page 2

TEST DATE		TEST TYPE/ORGANISM	LC ₅₀	NOEC	% Survival	NOTES	Lab
07/28/09-08/04/09		Chronic P. promelas	NA	100% S	75%	Pass	CBI
Received 10/08/09			İ	100 % G		ļ	
07/29/09-07/31/09	-	Acute P. promelas	>100%	NA	100%	Pass	CBI
Received 10/08/09				:			
07/28/09-08/03/09	AN-4	Chronic <u>C</u> . <u>dubia</u>	NA	100%	100%	Pass	CBI
Received 10/08/09		· .		S&R			
07/29/09-07/31/09		Acute <u>C</u> . <u>dubia</u>	>100%	NA	100%	Pass	CBI
Received 10/08/09							
07/13/10-07/20/10		Chronic P. promelas	NA	100% S	93%	Pass	Olver
Received 10/14/10				100 %.G			
07/14/10-07/16/10		Acute P: promelas	>100%	NA	100%	Pass.	Olver
Received 10/14/10							
07/13/10-07/19/10	AN-5	Chronic <u>C</u> . <u>dubia</u>	NA	100%	100%	Pass	Olver
Received 10/14/10				S&R			
07/14/10-07/16/10		Acute:C. dubia	>100%	NA .	100%	Pass	Olver
Received 10/14/10							

% Survival is the percent survival in 100% effluent at the end of the test period. All samples are 24 hour flow proportional composites.

ABBREVIATIONS: AN = Annual tests

QT = Quarterly test Olver = Olver Laboratories

CBI = Coastal Bioanalysts, Inc.

R = Reproduction

G = Growth

= Survival

COM . JNWEALTH OF VIRC . . IA DEPARTMENT OF ENVIRONMENTAL QUALITY

Water Division - Office of Water Permit Support 529 East Main Street Richmond, Virginia 23219

MEMORANDUM

Subject: Marion STP - Ammonia limits

To: Fred Wyatt

From: M. Dale Phillips

Date: April 25, 1996

Copies:

Situation: The current limits were based on old (before the current standards were adopted in 1992) criteria and guidance. They are very stringent and difficult to attain. The question is can they be relaxed?

There are two restrictions in the law and regulations that may limit our ability to relax these limits:

Antibacksliding - since the discharger has installed and operated nitrification facilities and has demonstrated compliance with the existing limits, the antibacksliding regulations may limit our ability to modify these limits. A relaxation would be acceptable based on new data that was not available at the time of permit issuance (the 7Q10 has changed significantly and new temperature and pH data are now available).

Antidegradation - Originally the stream was unimpacted. The ammonia limits were placed in the first permit and as a result the STP has complied with them since start up. The available data indicates that the stream was, and still is, a tier 2 stream to which antidegradation must be applied.

Regardless of antibacksliding considerations and any relaxation that may be allowable according to those regulations, the required application of our antidegradation policy will severely restrict what we can do in this situation.

I can identify only one alternative that is allowable - issue the permit in compliance with section 303(d)(4) of the Clean Water Act and with our antidegradation policy. This section of the Act basically says that permit limits may be revised if the standards will still be attained and if the revised limits are subject to and consistent with the antidegradation policy.

If a permit revision is in compliance with section 303(d)(4) then antibacksliding does not prevent a modification of its limits (see section 402(o)(1) of the Act).

The following approach complies with our antidegradation policy and is acceptable according to federal law:

1. You have demonstrated (by use of MIX.EXE) that complete mix equations are appropriate in this case. You can neglect

acute toxicity since chronic toxicity will be the controlling factor relative to the permit limits.

- 2. Calculate the existing instream concentration by application of complete mix equations. Use the existing limit, the new 7Q10 and the STP design flow. Assume the background is zero.
- 3. Calculate the chronic standard for the stream using the appropriate temperature and pH.
- 4. Calculate the unallocated assimilative capacity. This is the difference between the existing instream concentration and the chronic standard concentration.
- 5. Calculate the antidegradation baseline according to our antidegradation policy. This is the sum of the current instream concentration and 25% of the unused capacity.
- 6. Use the antidegradation baseline instead of the standard to calculate the WLAC.
- 7. Run the WLA. EXE program with one high fictitious data point and the WLAc from step 6 to force the program to calculate limits that will comply with the antidegradation baseline.
- 8. In accordance with the EPA's requirements for POTWs write the limits as weekly and monthly averages.

The limits that result are:

- sufficient to maintain the instream concentrations of ammonia well below the requirements of the water quality standards.
- 2. subject to and in accordance with our antidegradation policy.
- in compliance with section 303(d)(4) of the Clean Water Act and are, therefore, not subject to antibacksliding restrictions.

This protocol may be applied to either single or tiered limits.

EPA has indicated that a new limits page(s) and the supporting calculations are all that are necessary to allow removal of the objection. I would suggest you also send a copy of this memo as justification for the new limits.

Note: The baseline you identify in step 5 should be preserved somewhere for reference because no further degradation can be allowed in the future without Board action.

Fred,

I ran this by EPA and they said they would accept it.

All they need is a new limits page(s) and the calculations and they will remove the objection.

I would suggest that you look at both single and tiered limits and go with the less stringent. I am sorry I didn't have time to do the calculations but you can probably do them faster than I can anyway because I would have to find data that you know by heart by now.

You can fax it to EPA or you can E-mail it to me and I will print and fax it to EPA.

Fred Wyter,

3

```
Effluent flow = 3.4 MGD Stream 7Q10 flow = 11.87 MGD Stream 1Q10 flow = 9.28 MGD Width = 30 ft Slope (ft/ft) = .00316 Channel has normal irregularities
```

C H R O N I C R E S U L T S
7010 depth = 1.37 ft
7010 velocity = 0.57 ft/sec = 9.4 mi / day
Mixing length @ 7010 = 403 ft =
Residence time = 0.008 days
COMPLETE MIX MAY BE USED FOR THE CHRONIC WLA
Percent of 7010 to be used for WLAc = 100%

A C U T E R E S U L T S

1010 depth = 1.22 ft
1010 velocity = 0.53 ft/sec = 8.7 mi / day
Mixing length @ 1010 = 446 ft =
Residence time = 0.232 hours
COMPLETE MIX MAY BE USED FOR THE ACUTE WLA
Percent of 1010 to be used for WLAa = 100%

Use print screen for hard copy

C:\MIXPROG>

```
٠0
                                                 NOBS
                                                             AVE
                                                                        MAX
          PARAMETER
      BEG-DATE
                   END-DATE
                                                  23
                                                           11.4
                                                                       19.6
    10
         WATER
                      TEMP
      92/06/24
                   96/02/14
PRINT DETAILS FOR THIS PARAMETER ? (YES OR NO)
JHAT RESTRICTIONS ??
ENTER RESTRICTIONS OR "GO"
 6CMFH045.72
                               STORET System
   51 11.0 081 28 55.0
                            4
  693 BRIDGE OFF U.S. RT 11 APPROX 30 FT DWNST
                           SMYTH
51173 VIRGINIA
                             040600
)4-TENNESSEE
7-TENNESSEE + BIG SANDY
                                       /TYPA/AMBNT/STREAM
11VASWCB 06010101
         920201
                      DEPTH
 INDEX
MILES
                                 00010
                  DEPTH
                                WATER
  DATE
          TIME
                                 TEMP
  FROM
           OF
                                 CENT
          DAY
                  FEET
   TO
                                                 Based on two other nearby gaugine
stations with longer periods of record,
on the middle Fork of Holston River,
                                   15.0
12/06/24 1222
                   0
12/08/05 1000
                                   14.1
                   0
                                   14.1
12/08/05 1000
                                    9.1
2/10/19 1137
                                                     90th percentile temperature of
                                    5.4
12/12/15 1248
                                                           seems appropriate
                                    7.6
13/02/08 1242
13/04/19 1100
                   0
                                   17.4
13/06/29 0940
                   0
                                   17.5
13/08/19 0922
                                   10.1
3/10/28 0842
                                    3.1
13/12/27 0918
                                    5.2
14/02/08 0848
                   0
                                   13.3
14/04/25 0951
                                  19.6
                   0
14/06/22 1221
                                  19.1
14/08/15 1248
                   0
                                  13.3
14/10/20 0958
                   0
                                    8.9
14/12/08 0953
                                  10.2
15/03/15 0941
                   0
                   0
                                    9.9
15/04/26 1039
                                  17.7
35/06/29 1025
                                  12.8
35/10/11 0836
                   0
                                    3.2
                   0
15/12/12 1207
                                    5.8
06/02/14 1127
                   "NEXT STATION", OR "ALL"
ENTER PARM CODE,
100
                                                NOBS
                                                            AVE
                                                                        MAX
         PARAMETER
                  END-DATE
     BEG-DATE
                                                           7.74
                                                                                  7
                                                  23
                                                                       8.61
                                  SU
   400
           PH
                  96/02/14
     92/06/24
PRINT DETAILS FOR THIS PARAMETER ? (YES OR NO)
VHAT RESTRICTIONS ??
```

FNTER RESTRICTIONS OR "GO"

```
STORET System
36 51 11.0 081 28 55.0
                          4
                               APPROX 30 FT DWNST
T 693 BRIDGE OFF U.S. RT
                         SMYIH
51173 VIRGINIA
                           040600
)4-TENNESSEE
3-TENNESSEE + BIG SANDY
                                     /TYPA/AMBNT/STREAM
?1VASWCB 06010101
        920201
                    DEPTH
 INDEX
 MILES
                               00400
                                PH
  DATE
         TIME
                 DEPTH
  FROM
          OF
                                SU
         DAY
                 FEET
   TO
                                7.92
)2/06/24 1222
72/08/05 1000
                  0
                               8.61 Fluke
                               -8-61- Fluite
32/08/05 1000
                  1
02/10/19 1137
                                7.66
                  0
                                8.21
)2/12/15 1248
                  0
                                8.28
93/02/08 1242
                                8.07 < 90 th. percentile
3/04/19 1100
                  0
                                7.62
                  0
73/06/29 0940
                                7.65
33/08/19 0922
                  0
                                7.36
93/10/28 0842
                                7.23
                  0
33/12/27 0918
                                7.14
                  0
14/02/08 0848
                                7.86
14/04/25 0951
                  0
                                7.54
94/06/22 1221
                  0
                                7.86
                  0
14/08/15 1248
                                7.22
14/10/20 0958
                  0
14/12/08 0953
                  0
                                7.30
                  0
                                8.00
35/03/15 0941
15/04/26 1039
                  0
                                7.82
                                7.38
35/06/29 1025
                  0
                                7.36
)5/10/11 0836
                  0
05/12/12 1207
                                7.73
16/02/14 1127
                                7.49
                 0
ENTER PARM CODE, "NEXT STATION", OR "ALL"
and
₹EADY
logoff.
TG:S511 LOGGED OFF FRIDAY 04/26/96 AT 13:27:26
TPU: TCB :01.65, SRB :00.07, TOTAL :01.72
O: DISK 258, TERM 210, TOTAL 468
COST: CPU $.24, I/O $.06, TOTAL $.30
```

THE CPU TIMES HAVE BEEN NORMALIZED TO THE PROCESSING SPEED OF

THE ES9021-900 SYSTEM.

```
FORMULAS USED IN THE CALCULATION OF CHRONIC CRITERIA VALUES FOR AMMONIA IN FRESHWATER
```

The 4-DAY average concentration of ammonia (in mg/L as un-ionized NH3) calc. as follows].

CHRONIC ANNONIA STANDARD FOR WARNWATER HABITATS - TROUT/ OTHER SENSITIVE COLDWATER SPECIES ABSENT

ENTER STREAM TEMPERATURE

D. -

22.00 C

ENTER STREAM PH

8.07 S.U.

FORMULA: CHRONIC (un-ionized) NH3 CRITERIA=

0.80/ FT/ FpH/ RATIO

CHRONIC un-ionized AMMONIA CRITERIA=

0.06

where: 1) FT = Final Temperature

0.03(20 - TCAP) : TCAP < T < 30 C

TCAP = 20 C since trout, coldwater species absen

: 0 < T < TCAP or = 10

PT = 1.00

2) FpH = Final pH =

1; if 8.0 < pH < 9.0

7.4 - pH (1 + 10)/1.25; if 6.5 < pH < 8.0

FpH = 1.00

3) RATIO = 13.5; if 7.7 < pH < 9.0

7.7 - pH 7.4 - pH); if 6.5< pH < 7.7 or RATIO = 20.25 x (10 13.50

RATIO =

pka - pH 1/(10 + 1) 4) Fraction of un-ionized Ammonia =

pka = 0.09018 + (2729.92/(273.2 + Temperature C))

0.05

pka = 9.34

Fraction of un-ionized Ammonia =

Calc. Un-ionized Criteria/ Fraction of Un-ionized NH3 5) Total Ammonia Criteria =

> 1.16 Total Ammonia Criteria =

6) NH3-N Criteria Value = 1.16 X .822 =

```
FORMULAS USED IN THE CALCULATION OF ACUTE CRITERIA VALUES FOR AMMONIA IN FRESHWATER
```

[The one hour average concentration of ammonia (in mg/L as un-ionized NH3) calc. as follows].

B.- ACUTE ANNONIA STANDARD FOR WARMWATER HABITATS - TROUT/ OTHER SENSITIVE COLDWATER SPECIES ABSENT

ENTER STREAK TEMPERATURE 22

22.00 °C

ENTER STREAM PH

8.07 S.U.

FORMULA: ACUTE (un-ionized) AMMONIA CRITERIA= 0.52/ FT/ FpH/ 2

ACUTE un-ionized AMMONIA CRITERIA =

0.30

where: 1) FT = Final Temperature

0.03(20 - TCAP) 10 ; TCAP < T < 30 C

TCAP = 25 C since trout, coldwater species absen

or = 10 .03(20 - T) ; 0 < T < TCAP

FT = 0.87

2) FpH = Final pH =

1 : if 8.0 < pH < 9.0

or = $(1 + 10^{7.4} - pH)/1.25$; if 6.5 < pH < 8.0

FpH = 1.00

3) Fraction of un-ionized Ammonia = 1/(10 + 1)

pka = 0.09018 + (2729.92/(273.2 + Temperature C))

pka = 9.34

Fraction of un-ionized Aumonia = 0.05

- 4) Total Ammonia Criteria = Calc. Un-ionized Criteria/ Fraction of Un-ionized NH3

 Total Ammonia Criteria = 5.83
- 5) NH3-N Criteria Value = 5.83 X .822 = 4.79 mg/L

Recalcultion of Total Ammonia Nitregen Limits

Facility Name: Marion WWTP VPDES Permit No: VA0086304

 ${\rm NH_3-N}$ limits are derived from the ammonia tables or formulas in the <u>Water Quality Standards</u>. Human Health standards are not applicable for ammonia.

Based on the formulas in the <u>Water Quality Standards</u>, Total Ammonia standards were calculated for a year round limit.

90th. percentile pH = 8.07 90th. percentile temp. = 22° C

The calculated ammonia nitrogen water quality standards (WQS) are:

Acute WQS = $(5.83 \times 0.822) \text{ mg/l} = 4.79 \text{ mg/l}$

Chronic WQS = $(1.16 \times 0.822) \text{ mg/l} = 0.95 \text{ mg/l}$

 $Q_e = Design Flow of STP(MGD) = 3.4$

 Q_s = Critical Flow (1Q10 for Acute, 7Q10 for Chronic)

 $Q_{s-1} = 1Q10 \text{ Flow (MGD)} = 9.28$

 $Q_{s-1w} = 1010 \text{ High Flow (MGD)} = 12.52$

 $Q_{s-7} = 7Q10 \text{ Flow} (MGD) = 11.87$

 $Q_{s-7w} = 7Q10 \text{ High Flow (MGD)} = 14.46$

Recalculation . Total Ammonia Nitrogen Li _ts (continued)

The dry and wet seasons ammonia nitrogen limits in the existing permit are also the existing wasteload allocations. The existing dry season wasteload allocation is 2.6 mg/l.

Chronic:

Chronic Water Quality Standard = 0.95 mg/l

X = Existing permitted instream concentration

WLA_c = Chronic Wasteload Allocation

 $\text{WLA}_{c} = [(X)(Q_{s-7} + Q_e) - Q_{s-7}(\text{background instream NH}_{3-N})]/Q_e$

 $WLA_c = 2.6 \text{ mg/l} = (X) (11.87 + 3.4) - 0]/3.4 \text{ mg/l} = (X) (4.49) \text{ mg/l}$

X = 0.58 mg/l

Remaining allocation = (0.95 - 0.58) mg/l = 0.37 mg/l

Allowable increase in allocation = 25%(0.37) mg/l = .093 mg/l

New allowable instream concentration = (0.58 + 0.093 mg/l

New allowable instream concentration = 0.673 mg/l

New WLA_c = [(0.67)(11.87 + 3.4) - 0]/3.4 = 3.0 mg/1

Acute:

Acute Water Quality Standard = 4.79 mg/l

X = Existing permitted instream concentration

WLA_a = Acute Wasteload Allocation

 $WLA_a = [(X)(Q_{s-1} + Q_e) - Q_{s-1}(background instream NH_{3-N})]/Q_e$

 $WLA_a = 2.6 \text{ mg/l} = (X)(9.28 + 3.4) - 0]/3.4 \text{ mg/l} = (X)(3.73)$

X = 0.70 mg/l

Remaining allocation = (4.79 - 0.70) mg/l = 4.09 mg/l

Allowable increase in allocation = 25%(4.09) mg/l = 1.02 mg/l

New allowable instream concentration = (0.70+1.02) mg/l

New allowable instream concentration = 1.72 mg/l

New WLA, = [(1.72)(9.28 + 3.4) - 0]/3.4 = 6.4 mg/1

It is recommended that only the maximum daily limit be used.

DATA

STREAM INSPECTION REPORT FORM

PAGE 1

Discharge Name: Marion WWTP
Location: Intersection of Exit 15 of I-81 & Rt. 11
General Stream Information:
Stream Name: Middle Fork Holston River
Tonggraphic Man (attach copy): Marin Qual
Basin: Tennessee - Big Sind Section: 5 Class: IV Special Standards: None
Basin: Tennessee - Big Sind Section: 5 Class: IV Special Standards: None Are the standards for this stream violated due to natural causes? (Y/N)
Is this stream correctly classified? (Y/N)
<pre>If "N", what is the correct classification?</pre>
Additional Discharges Information:
Is there a discharger within 3 miles <u>upstream</u> of the proposal? (Y/N)
Does antidegradation apply to this analysis? (Y/N)
Any dams in stream section being modeled? (Y/N)
\cdot

Notes:

This model is for a completely new 3.4 MGD facility which will replace the existing 1.7 MGD Marion STP, which is approximately 1.6 miles upstream of the proposed 3.4 map facility.

By memo dated February 4, 1888 (copy attached), Steve Williams, OWRP, supplied a P7-10 flow at the existing Marion STP, which was used in a model (approved 5/1/88) for an upgraded transment facility at the existing site. This P7-10 flow is 10.71 mcD. Howewer, the 310, mcD withdrawal of the water treatment plant, upstream of the 5TP, must be subtracted from this value, leaving a P7-10 flow of 7.71 mcD. additional tributary flows result in a P7-10 at the point of discharge of the proposed new facility of 8.949. Using a flow factor of 0.20 of 5/mi. 2, this P7-10 relates to an affective dramage area of 69.2 mi. 2

Inspected by Inf M. Wyatt Date 12/19/90 Region 5000

REGIONAL MODELING SYSTEM

STREAM INSPECTION REPORT FORM

PAGE 2

(Fill In This Page for Each Segment To Be Modeled)

Specific Stream Information From Field Inspection: Segment Number
Reason for Defining Segment: Tributary at End 2 Physical Change at End
Length of Segment (mi.)
Estimated Average Width of Section (ft.)
Estimated Average Depth of Section (ft.) in Stream Center5
Estimated Average Velocity of Section (ft/sec)
Estimated Flow in the Segment (MGD)
General Type of Cross Rectangular Triangular Deep Narrow U Wide Shallow Arc X Section in Segment: Irregular No Defined Channel
General Channel Characteristics of Segment: Mostly Straight Moderately Meandering Severely Meandering No Defined Channel
Does the stream have a pool and riffle character? (Y/N)
If "Y": % of length that is pools50 Average depth of pools (ft)6/
% of length that is riffles 50 Average depth of riffles (ft) 3
Bottom: Sand Silt Gravel Small Rock Large Rock Boulders
Sludge Deposits: None X Trace Light Heavy Heavy
Plants: Rooted: None Few Light Heavy
Algae: None Film on Edges Only Film on Entire Bottom
Does the water have an evident green color? (Y/N)
Tributary: (Fill in if a tributary enters at the end of the segment) Tributary Name: Unnamed
Width (ft) 2 Depth (ft) 0.5 Estimated Flow (MGD) 12-6
Any evident Water Quality problems in the Trib.? (Y/N) //
If "Y", explain:
Discharges: (Fill in if a discharge enters at the end of the segment)
Discharge Name:
Any evident problems caused by this discharge? (Y/N)
If "Y", explain:

Segment 2

STREAM INSPECTION REPORT FORM

PAGE 2

(Fill In This Page for Each Segment To Be Modeled)

Specific Stream Information From Field Inspection: Segment Number 2 *
Reason for Defining Segment: Tributary at End Physical Change at End Discharge at End End of Model
Length of Segment (mi.)
Estimated Average Width of Section (ft.)
Estimated Average Depth of Section (ft.) in Stream Center
Estimated Average Velocity of Section (ft/sec)
Estimated Flow in the Segment (MGD)
General Type of Cross Rectangular Triangular Deep Narrow U Wide Shallow Arc X Section in Segment: Irregular No Defined Channel
General Channel Characteristics of Segment: Mostly Straight Moderately Meandering Severely Meandering No Defined Channel
Does the stream have a pool and riffle character? (Y/N)
If "Y": % of length that is pools 50 Average depth of pools (ft) 7
% of length that is riffles 50 Average depth of riffles (ft) 3
Bottom: Sand Silt Gravel Small Rock Large Rock Boulders
Sludge Deposits: None 😾 Trace Light Heavy
Plants: Rooted: None Few Light Heavy
Algae: None File on Edges Only > File on Entire Bottom
Does the water have an evident green color? (Y/N) N
Tributary: (Fill in if a tributary enters at the end of the segment)
Tributary Name:
Width (ft) Depth (ft) Estimated Flow (MGD)
Any evident Water Quality problems in the Trib.? (Y/N)
If "Y", explain:
Discharges: (Fill in if a discharge enters at the end of the segment)
Discharge Name:
Any evident problems caused by this discharge? (Y/N)
If "Y", explain:

DATA PREPARATION WORKSHEET

PAGE 1

(This Page is Needed Once for Each Model)

Use this form to assist in the preparation of the model input data. The form is arranged so that the data appears in the order needed by the model. Once the form is complete, you may input the data for a model run by a simply entering the numbers and other data that you have put in the right hand column. There is some guidance provided here, but for detailed guidance refer to the manual or call headquarters for assistance.

Some of the input data are character, such as names; some are codes, such as "Y", "N" or "3"; and some are actual numeric data such as "5.6". Be careful to enter the correct item called for. Some of the lines below may be blank depending on choices. Leave them blank and do not input data for blank lines when running the model. Miscellaneous items that are not in the right most column are intermediate guidelines, not input data.

Site Inspection Performed? (Y/N) (12/19/90)	Was 111 Cod 11/21
Name of Receiving Stream River Basin Section Classification	Middle Fork Holston Tennessee-Rig Sand, River 5
Are Standards Violated Due to Natural Causes? (Y/N) Class and Standards Appropriate for the Stream? (Y/N) Is There a Dam in the Reach to be Modeled? (Y/N)	77
Is There a Discharge Within 3 Miles of Model Start? (Y/N) If "Y": Flow of Upstream Discharge (MGD) BOD5 at Model Start (Mg/l) TKN at Model Start (Mg/l) D.O. at Model Start (Mg/l)	
Name of Discharge Being Modeled Proposed Flow (MGD) Proposed BOD5 (Mg/l) Proposed TKN (Mg/l) Proposed D.B. (Mg/l)	Marion STP 3.4 2.5 2.0 6.5
Number of Segments to be Modeled (Determined during your field inspection and based on the physical characteristic of the stream. See "Reason for Defining Segment" on Page 2)	.5
7010 Estimation Method Code (Two methods are provided: 1 = Drainage Area Comparison; 2 = Flow Comparison You may compare drainage areas or observed flows at the model site with a gauge)	
Name of Gauge Used to Estimate 7010 If Method 1: Gauge Drainage Area (Sq.Mi.) Gauge 7010 (MGD) Drainage Area at Discharge (Sq.Mi.) If Method 2: Gauge 7010 (MGD) Observed Flow at Gauge (MGD) Observed Flow at Discharge Point (MGD)	Middle 1016 Holsty Ri 0-132 1712-
Is the Stream a Dry Ditch? (Y/N) Does Antidegradation Apply? (Y/N)	26
Allocation Temperature for the Model (°C) (Obtain a STORET retrieval for the nearest monitoring station to the discharge.	

Enter the 98th percentile temperature of the STORET data for the period being

modeled.)

Segment 1

DATA PREPARATION WORKSHEET

PAGE: 2

(This Page is Needed for Each Separate Segment Being Modeled)

The first segment starts at the discharge being modeled and segment ends are defined according to the field inspection. Normally a distance of 3 to 5 miles is sufficient for a single discharge model. Dilution by a major, tributary is often sufficient to allow the model to be ended. You should, however, inspect-sufficient stream length to allow you to increase the number of segments or total model length if the model shows that the critical area is outside your initial estimates. This will allow the addition of segments and the preparation of a new data set without the necessity to reinspect the stream. As a general guideline, the higher the percentage the discharge is of the total stream flow the longer the distance you will have to model. Ten miles should suffice for practically all situations.

for practically all situations.	,
Segment Definition Code Reasons for Defining a Segment: 1 = A Tributary Enters at the Segment End 2 = A Significant Physical Change Occurs at Segment End 3 = Another Discharge Enters at Segment End 4 = The Model Ends	
Length of Segment (Mi.)	0.6
Based on the stream characteristics you observed, use your judgement and the flow ratio below to estimate the segment's physical characteristics at the 7016 flow condition. Note that the model checks to see if cross sectional area times velocity is equal to the flow (V=QA). It checks to see if the drainage area increases in the downstream direction and it checks to see if the elevation decreases in the downstream direction. You will run into trouble if the estimates you make below are unreasonable.	
(a): Enter Flow Estimated During Inspection (MGD) (b): Enter 7010 at Model Start (Include Discharge) (MGD) (c): Calculate the Flow Ratio (a/b) // 29.3 // 35 // 35	•
Estimated 7010 Width (Ft.) Estimated 7010 Depth (Ft.) Estimated 7010 Velocity (ft/sec)	1.6 0.4
Continuity Check: (a): Multipy: Width x Depth x Velocity x .6463 (b): Enter 7010 at Model Start (Include Discharge) (MGD) /2.35 If the two numbers above differ by much, you have made some sort of error. Review your data and revise your estimates.	3 = 12,4
Drainage Area at the Beginning of This Segment (Sq.Mi.) Drainage Area at the End of This Segment (Sq.Mi.) (Omit the drainage area of any tributaries that are included in this segment under the "Tributary at End" section below).	69.2
Elevation at the Beginning of This Segment (Ft.) Elevation at the End of This Segment (Ft.)	20.59
The following data is based on the field inspection and you should estimate what the overall "average" segment will look like at the 7010 flow condition. You enter the number code that best describes what you saw for this segment.	4
Type of Cross Section 1 = Rectangular; 2 = Triangular; 3 = Deep Narrow U; 4 = Wide Shallow Arc;	

5 = Irregular; 6 = No Defined Channel

Version 3.0 (4/90

DATA PREPARATION WORKSHEET

PAGE 2

(This Page is Needed for Each Separate Segment Being Modeled)

The first segment starts at the discharge being modeled and segment ends are defined according to the field inspection. Normally a distance of 3 to 5 miles is sufficient for a single discharge model. Dilution by a major tributary is often sufficient to allow the model to be ended. You should, however, inspect sufficient stream length to allow you to increase the number of segments or total model length if the model shows that the critical area is outside your initial estimates. This will allow the addition of segments and the preparation of a new data set without the necessity to reinspect the stream. As a general guideline, the higher the percentage the discharge is of the total stream flow the longer the distance you will have to model. Ten miles should suffice for practically all situations.

Segment	Definition	Code

__4-

Reasons for Defining a Segment:

- 1 = A Tributary Enters at the Segment End
- 2 = A Significant Physical Change Occurs at Segment End
- 3 = Another Discharge Enters at Segment End
- 4 = The Model Ends

Length of Segment (Mi.)

Based on the stream characteristics you observed, use your judgement and the flow ratio below to estimate the segment's physical characteristics at the 7016 flow condition. Note that the model checks to see if cross sectional area times velocity is equal to the flow (V=QA). It checks to see if the drainage area increases in the downstream direction and it checks to see if the elevation decreases in the downstream direction. You will run into trouble if the estimates you make below are unreasonable.

(a): Enter Flow Estimated During Inspection (MGD)

155

(b): Enter 7018 at Model Start (Include Discharge) (MGD)(c): Calculate the Flow Ratio (a/b)

Estimated 7010 Width (Ft.) Estimated 7010 Depth (Ft.) Estimated 7010 Velocity (ft/sec) Continuity Check:

(a): Multipy: Width x Depth x Velocity x .6463

(city x .6463 (32) (1.6) (0.4) (.6463) - 13.

(b): Enter 7016 at Model Start (Include Discharge) (MGD) 12.22 If the two numbers above differ by much, you have made some sort of error.

Review your data and revise your estimates.

Drainage Area at the Beginning of This Segment (Sq.Mi.)
Drainage Area at the End of This Segment (Sq.Mi.)

rainage area at the End of inits beginning that are included in this segment under the

"Tributary at End" section below).

Elevation at the Beginning of This Segment (Ft.) Elevation at the End of This Segment (Ft.)

- 2049 -2022

The following data is based on the field inspection and you should estimate what the overall "average" segment will look like at the 7016 flow condition. You enter the number code that best describes what you saw for this segment.

Type of Cross Section

- 1 = Rectangular; 2 = Triangular; 3 = Deep Narrow U; 4 = Wide Shallow Arc;
- 5 = Irregular; 6 = No Defined Channel

Segment 1

DATA PRESARATION WORKSHEET	PAGE 2 (Continued)
General Character of Stream 1 = Mostly Straight; 2 = Moderately Meandering; 3 = Severely Meandering; 4 = No Defined Channel	2
Does This Segment Have a Pool and Riffle Character? (Y/N) If 'Y': Percent of the Length of This Segment That is Pools : 100 Percent of the Length of This Segment That is Riffles : 100 Estimated Average Depth of the Pools (Ft.) Estimated Average Depth of the Riffles (Ft.)	7.5 5.4 0.8
Check that this is reasonable with the overall depth you entered on previous page: (a): Enter the 7010 Depth (Ft.) (from previous page) (b): Enter % Pool Length x Pool Depth (c): Enter % Riffle Length x Riffle Depth (d): Enter (b+c)/100 The values in (a) and (d) should be the same or very close.	
General Bottom Type i = Sand; 2 = Silt; 3 = Gravel; 4 = Small Rock; 5 = Large Rock; 6 = Boulders	5
Sludge Deposits 1 = None; 2 = Trace; 3 = Light; 4 = Heavy (This is organic sludge from an inadequate or malfunctioning STP. Do not confuse with silt deposits from other sources.)	
Plants 1 = None; 2 = Few; 3 = Light; 4 = Heavy (These are submerged macrophytes or rooted plants in the waterway.)	
Algae 1 = None; 2 = Only on Edges; 3 = On Entire Bottom (This is visually evident algae growth in the water, e.g green files, green filements or green masses of algae attached to the bottom or in shallow parts of the bank.)	
Does the Water Have an Evident Green Color? (Y/N) (This is used as an indication of phytoplankton that one cannot normally see except by a general color imparted to the water by the floating cells.)	_ N
Tributary at End If you defined the segment because there is a tributary at the end, complete the following: Tributary Drainage Area (Sq.Mi.) Tributary Flow (MSD) (Tributary D.A. x Gauge 7010 / Gauge D.A.) NOTE: "Standard" background values will be used for this tributary (i.e BOD5 = 2 Mg/l,	0.27
NOTE! "Standard" background values will be used for this tributary (i.e BOD5 = 2 Mg/l, TKN = Ø Mg/l, D.O. = 96% of D.O. Saturation). If these values are not appropriate or the tributary has a discharge within 3 miles of the confluence with the stream being modeled, then redefine the segment as "3 - Discharge at End" and go to the next section.	. -
Discharge at End If you defined the segment because there is another discharge at the end, complete the following: Discharge Name Discharge Flow (MGD) Discharge BODS (Mg/1)	
Discharge TKN (Mg/1) Discharge D.O. (Mg/1)	

Segment 2

DATA PRESARATION WORKSHEET	PAGE 2 (Continued)
General Character of Stream 1 = Mostly Straight; 2 = Moderately Meandering; 3 = Severely Meandering; 4 = No Defined Channel	2
Does This Segment Have a Pool and Riffle Character? (Y/N) If "Y": Percent of the Length of This:Segment That is Pools 1:100: 100 Percent of the Length of This Segment That is Riffles 1:100 Estimated Average Depth of the Pools (Ft.) Estimated Average Depth of the Riffles (Ft.)	5.42 0.8
(a): Enter the 7016 Depth (Ft.) (from previous page) (b): Enter % Pool Length x Pool Depth (c): Enter % Riffle Length x Riffle Depth (d): Enter (b+c)/166 The values in (a) and (d) should be the same or very close.	5
General Bottom Type 1 = Sand; 2 = Silt; 3 = Gravel; 4 = Small Rock; 5 = Large Rock; 6 = Boulders	
Sludge Deposits 1 = None; 2 = Trace; 3 = Light; 4 = Heavy (This is organic sludge from an inadequate or malfunctioning STP. Do not confuse with silt deposits from other sources.)	2
Plants 1 = None; 2 = Few; 3 = Light; 4 = Heavy (These are submerged macrophytes or rooted plants in the waterway.)	2
Algae 1 = None; 2 = Only on Edges; 3 = On Entire Bottom (This is visually evident algae growth in the water, e.g.— green films, green filments or green masses of algae attached to the bottom or in shallow parts of the bank.)	~)
Does the Water Have an Evident Green Color? (Y/N) (This is used as an indication of phytoplankton that one cannot normally see except by a general color imparted to the water by the floating cells.)	
Tributary at End If you defined the segment because there is a tributary at the end, complete the following: Tributary Drainage Area (Sq.Ki.) Tributary Flow (MGD) (Tributary D.A. x Gauge 7018 / Gauge D.A.)	- ,
NOTE! "Standard" background values will be used for this tributary (i.e BODS = 2 Mg/TKN = 0 Mg/l, D.O. = 96% of D.O. Saturation). If these values are not appropriate or the tributary has a discharge within 3 miles of the confluence with the stream being modeled, then redefine the segment as "3 - Discharge at End" and go to the next section	
Discharge at End If you defined the segment because there is another discharge at the end, complete the following: Discharge Name ' Discharge Flow (MGD) Discharge BODS (Mg/l) Discharge TKN (Mg/l) Discharge D.D. (Mg/l)	

REGIONAL MODELING SYSTEM VERSION 3.2

MODEL SIMULATION FOR THE Town of Marion WWTP DISCHARGE

TO Middle Fork Holston River

THE SIMULATION STARTS AT THE Town of Marion WWTP DISCHARGE

****** PROPOSED PERMIT LIMITS

FLOW = 3.4 MGD cBOD5 = 25 Mg/L TKN = 20 Mg/L D.O. = 6 Mg/L

**** THE MAXIMUM CHLORINE ALLOWABLE IN THE DISCHARGE IS 0.040 Mg/L However, a Hernate disinfection required due to endangered species

THE SECTION BEING MODELED IS BROKEN INTO 2 SEGMENTS RESULTS WILL BE GIVEN AT 0.1 MILE INTERVALS

BACKGROUND CONDITIONS

THE 7010 STREAM FLOW AT THE DISCHARGE IS 8.96454 MGD THE DISSOLVED OXYGEN OF THE STREAM IS 6.852 Mg/L THE BACKGROUND CBODU OF THE STREAM IS 5 Mg/L THE BACKGROUND DBOD OF THE STREAM IS 0 Mg/L

****** MODEL PARAMETERS

SEG.	LEN. Mi	VEL. F/S	K2 1/D	K1 1/D	KN · 1/D	BENTHIC Mg/L		TEMP. °C	DO-S Mg/
1 2	0.60 1.10	J	10.000 14.727	0.700 0.700	0.300 0.300		2054.00 2035.50	26.00 26.00	7.6 7.6

(The K Rates shown are at 20°C ... the model corrects them for temperature.)

RESPONSE FOR SEGMENT 1

TOTAL STREAMFLOW = 12.3645 MGD (Including Discharge)

DISTANCE FROM HEAD OF SEGMENT (MI.)	TOTAL DISTANCE FROM MODEL BEGINNING (MI.)	DISSOLVED OXYGEN (Mg/L)	cBODu (Mg/L)	nBODu (Mg/L)
0.000 0.100 0.200 0.300 0.400 0.500	0.000 0.100 0.200 0.300 0.400 0.500	6.617 6.433 6.275 6.138 6.021 5.921	20.811 20.594 20.378 20.165 19.954 19.745	20.241 20.132 20.023 19.914 19.806 19.699
0.600	0.600	5.836	19.539	19.593

FOR THE TRIBUTARY AT THE END OF SEGMENT 1
FLOW = .87 MGD cBOD5 = 2 Mg/L TKN = 0 Mg/L D.O. = 6.8515 Mg/L

FLOW FROM INCREMENTAL DRAINAGE AREA = 0.0000 MGD

RESPONSE FOR SEGMENT 2

TOTAL STREAMFLOW = 13.2345 MGD (Including Discharge, Tributaries and Incremental D.A. Flow)

DISTANCE FROM HEAD OF SEGMENT (MI.)	TOTAL DISTANCE FROM MODEL BEGINNING (MI.)	DISSOLVED OXYGEN (Mg/L)	cBODu (Mg/L)	nBODu (Mg/L)
0.000	0.600	5.903	18.583	18.305
0.100	0.700	5.934	18.412	18.217
0.200	0.800	5.962	18.242	18.130
0.300	0.900	5.988	18.073	18.044
0.400	1.000	6.011	17.906	17.957
0.500	1.100	6.033	17.741	17.872
0.600	1.200	6.053	17.577	17.786
0.700	1.300	6.071	17.415	17.701
0.800	1.400	6.089	17.254	17.617
0.900	1.500	6.105	17.095	17.533
1.000	1.600	6.120	16.937	17.449
1.100	1.700	6.135	16.781	17.366

REGIONAL MODELING SYSTEM 12-28-1990 12:41:39

Ver 3.2 (OWRM - 9/90)

DATA FILE = MARION.MOD

VERSION 3.2

REGIONAL MODELING SYSTEM

DATA FILE SUMMARY

THE NAME OF THE DATA FILE IS: MARION. MOD

Middle Fork Holston River THE STREAM NAME IS:

THE STREAM NAME IS: MIGGING Sandy River

THE SECTION NUMBER IS: 5 THE CLASSIFICATION IS: IV

STANDARDS VIOLATED (Y/N) = NSTANDARDS APPROPRIATE (Y/N) = Y

DISCHARGE WITHIN 3 MILES (Y/N) = N

THE DISCHARGE BEING MODELED IS: Town of Marion WWTP

PROPOSED LIMITS ARE:

FLOW = 3.4 MGD

BOD5 = 25 MG/L

TKN = 20 MG/L

D.O. = 6 MG/L

THE NUMBER OF SEGMENTS TO BE MODELED = 2

7010 WILL BE CALCULATED BY: DRAINAGE AREA COMPARISON THE GAUGE NAME IS: Middle Fork Holston River at Sevenmile Ford

GAUGE DRAINAGE AREA = 132 SQ.MI.

GAUGE 7010 = 17.1 MGD DRAINAGE AREA AT DISCHARGE = 69.2 SQ.MI.

STREAM A DRY DITCH AT DISCHARGE (Y/N) = N

ANTIDEGRADATION APPLIES (Y/N) = N

ALLOCATION DESIGN TEMPERATURE = 26 °C

SEGMENT INFORMATION

####### SEGMENT # 1 ######

SEGMENT ENDS BECAUSE: A TRIBUTARY ENTERS AT END

SEGMENT LENGTH = .6 MI

SEGMENT WIDTH = 30 FT SEGMENT DEPTH = 1.6 FT SEGMENT VELOCITY = .4 FT/SEC

DRAINAGE AREA AT SEGMENT START = 69.2 SQ.MI.
DRAINAGE AREA AT SEGMENT END = 69.2 SQ.MI.

ELEVATION AT UPSTREAM END = 2059 FT ELEVATION AT DOWNSTREAM END = 2049 FT

THE CROSS SECTION IS: WIDE SHALLOW ARC THE CHANNEL IS: MODERATELY MEANDERING

POOLS AND RIFFLES (Y/N) = Y

THE SEGMENT LENGTH IS 50 % POOLS

POOL DEPTH = 2.4 FT

THE SEGMENT LENGTH IS 50 % RIFFLES

RIFFLE DEPTH = .8 FT

THE BOTTOM TYPE = LARGE ROCK
SLUDGE DEPOSITS = NONE
AQUATIC PLANTS = FEW
ALGAE OBSERVED = VISIBLE ONLY ON EDGES
WATER COLORED GREEN (Y/N) = N

TRIBUTARY DATA

FLOW = .87 MGDBOD5 = 2 MG/L

TKN = 0 MG/L

D.O. = 6.8515 MG/L

SEGMENT INFORMATION

SEGMENT # 2

SEGMENT ENDS BECAUSE: THE MODEL ENDS

SEGMENT LENGTH = 1.1 MI

SEGMENT WIDTH = 32 FT SEGMENT DEPTH 1.6 FT SEGMENT VELOCITY = .4 FT/SEC

DRAINAGE AREA AT SEGMENT START = 69.2 SQ.MI. DRAINAGE AREA AT SEGMENT END = 69.82 SQ.MI.

ELEVATION AT UPSTREAM END 2049 FT ELEVATION AT DOWNSTREAM END = 2022 FT

THE CROSS SECTION IS: WIDE SHALLOW ARC THE CHANNEL IS: MODERATELY MEANDERING

POOLS AND RIFFLES (Y/N) = YTHE SEGMENT LENGTH IS 50 POOL DEPTH = 2.4 FT THE SEGMENT LENGTH IS 50 % RIFFLES RIFFLE DEPTH = .8 FT

THE BOTTOM TYPE = LARGE ROCK SLUDGE DEPOSITS = NONE AOUATIC PLANTS = FEW ALGAE OBSERVED = VISIBLE ONLY ON EDGES WATER COLORED GREEN (Y/N) = N

REGIONAL MODELING SYSTEM Ver 3.2 (OWRM - 9/90) 12-28-1990 12:44:31

Spreadsheet for detern	Spreadsheet for determination of WET test endpoints or WET limits Spreadsheet for determination of WET test endpoints or WET limits Spreadsheet for determination of WET test endpoints or WET limits Spreadsheet for the service of the servi		A	ш	١		[
Spreadsheet for determination of WET test endpoints or WET limits	Spreadsheet for determination of WET test endpoints or WET limits	-					<u> </u>	1	9 .	Ε		_	×	_1	=	z	0
Revokation Date: 0117003 ACUTE 100%= NOACC LOg NO K. Use 2s NA Tho NO NO NO NO NO NO NO N	Files, WETLLMH DATE Files	CI.		Sprea	dsheet f	or det	ermina			st endpc		WET I	imits				
Filter WETLIAM 10.05	Figure F	(7)															
Reference Refe	Files: WILLIAM Date 041606 ACUTE 100% = NOACC LCg NA \$4. USES NA Tub	+		Excel 97			Acute End	point/Permit		Use as LC ₅₀ in	Special Cond	lition, as TU	a on DMR				
Files With the table Modern Moder	Files With Materials ACUTE 1109% = NOACC LCo. = NA % Use as NA Use NOACC Co. With Material (Inc. NOACC	ın		Revision Da	ite: 01/10/05		П										
Chronic Endopurity-wint Links 1.720168224 Note: Inform the permittee that if the mean of the date accesses	Chemic Endont/Permit Link	'O 1		File: WETL	IM10.xls			11	NOAEC	LC ₅₀ = 1		% Use as		гиа			
Checonic Endpoint/Permit Limit Ubcz as NOEC 15 % Ubc as 10 % Decided and a section with blue type: Checonic Endpoint/Permit Limit Ubcz as NOEC 15 % Ubc as 10 % Ub	Checonic Endoclaridaries 1,0	. 0		ווויאירער ובחו	lited also)		ACUTE WLA	9	1 12058824	Note: Inform th	o normittoo th	acom out if the	- lot odi jo				
Fig. 10 Fig.	Chronic Endoint/Permit Limit Use as NOEC = 15 % Use as 1111 TU,	co.								this TUa:	1.0	a limit may res	sult using WI	A.EXE			
Chronic Endough Promit Limit Uses as NOEC Special Condition, as TUL on DMR	Chronic Enclosive Continue Co	의 :															T
Enter data in the calls with blue type: Ant. 1.30084025 Tu, NOBCC = 16 % Lees is 6.25 Tu, Enter data in the calls with blue type: Ant. 1.30084025 Tu, NOBCC = 16 % Lees is 6.25 Tu, Tu, Enter data in the calls with blue type: Ant. 1.3008402 Tu, NOBCC = 16 % Lees is 6.25 Tu,	Enter data in the cells with blue type: Art 1.378158073 Tu, NOEC = 16 % Use as 0.25 Tu, 1.378158073 Tu, NOEC = 16 % Use as 0.25 Tu, 1.378158073 Tu, NOEC = 16 % Use as 0.25 Tu, Tu, 1.378158073 Tu, NOEC = 16 % Use as 0.25 Tu,	= 5	,				Chronic End	Ipoint/Permit I		Use as NOEC	in Special Co	ndition, as T	Uc on DMR				T
The cale is the cale with bue type: Animals agains aga	Controlled Control C	1 (3				*	_		F								
Control of the cells with blue type: AML 6.56156976 T1, NOCC = 16 % Uses 6.25 T1 T1	CHILD CHIL	7				<	2	11.20588263	ı n	NOEC II	16.0	% Use as	7	ב ב			
Control of the Cont	Figure 10 Figu	10	Enter data in	n the cells w	rith blue type:		T	6.581586078	Į į	NOEC =	16	% Use as	7	Ď E			
Part Care Ca	Part	10 1	10.00							+-				2	-		
VPDES Number VA000000 San means note processed as chance VADORES Number VADORES N	Controller Con	- 60	Facility Name	ài	02/16/06		ACUTE WI	Aa,c	11.2058824		Note: Inform the	he permittee i	at if the me	gu			
Pain Pumber 2000 2.1 Middle 2.1 Midd	Pain Purple; 2000 September 24 MidD September 24 MidD September 24 MidD September 25 MidD September Sept	19	VPDES Num	iber.	VA0000000		Both means a	Tenta expressed a	e chronic		or the data exc	seeds this TU		2.70466772			
Penni Flow. 3.4 MiGD	Pain Flow. 3.4 Mod % Flow to be used from MX EXFE Eigher YN 1.1	2	Outfall Numb	Jer.	000						a military less	- Sillen iin	יַרַאַנ				
Chronic 7010; Chronic 7010	Chronic TQ10: S. 3 MiGD	T 9	i i				% Flow to be	e used from M	IIX.EXE		Difuser /mode	ling study?					
Activity	Chronic Did. 1:1 Chronic	1 5	Pialit Plow.		3.4	MGD				1	Enter Y/N	z					
Michael to calculate CV? (YIN) N (Minimum of 10 data points, same species, needed) Go to Page 2	March March Mainthun of 10 data points, same species, needed) Go to Page 2	3 77	Chronic 701	ċ	11.0	MSD MSD	100	%			Acute	1					-
Are data available to calculate CY? (YIV) N (Minimum of 10 data points, same species, needed) Go to Page 2 Are data available to calculate CY? (YIV) N (NoECS.LC.50, to not use gradientess than data) Go to Page 3 WCs 22.22222222 % Plant flow/plant flow + 70:10 NOTE: if the IWCa is >33%, specify the Dilution, acute NOTE: if the IWCa is >33%, specify the NOTE: if the IWCa is >33%, specify the Single of	Are data available to calculate CV2 (YNN) In (Minimum of 10 data points, same species, needed) Go to Page 2 Are data available to calculate ACR? (YNN) N (NOEC.4C.90, do not use greater/fisse) from the calculation of the calcul	in					3	00			Chronic	+					
WC_c 28.77165354 % Plant llow/plant flow + 1010 NOTE: If the WCa is >33%, specify the Second of the second	WC_c 26.77165354 % Plant flow/plant flow + 1C10 WOTE: if the WCa is >33%, specify the WC_c 22.2222222 % Plant flow/plant flow + 1C10 WORC = 100% testendpoint for use 22.2222222 % Plant flow/plant flow + 1C10 WORC = 100% testendpoint for use 22.2222222 % Plant flow/plant flow + 1C10 WORC = 100% testendpoint for use 22.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 100MWCa 21.2222222 % Plant flow/plant flow + 1C10 WORC = 10.222222 WORC = 10.2222222 WORC = 10.222222 WORC = 10.2222222 WOR	9	Are data ava	ilable to catc	ulate CV? (Y/I	(Z		(Minimum of 10	0 data points,	same species, r	needed)		30 to Page 2				
WCs 26.77165354 % Plant thoughant trow + 1010 NOTE: If the WCa is >33%, specify the	WC_s 26.77166324 % Plant llow/plant flow + 1Q10 NOTE: if the IWCa is >33%, specify the	\ [a	Are data ava	allable to calc	ulate ACR? (Y/I			(NOEC <lc50,< td=""><td>do not use gr</td><td>eater/less than</td><td>data)</td><td></td><td>30 to Page 3</td><td></td><td></td><td></td><td></td></lc50,<>	do not use gr	eater/less than	data)		30 to Page 3				
WCs. 26.77165354 % Plant flow/plant flow + 1010 NOTE: if the WCa is >333%, specify the Plant flow/plant flow + 7010 NOAEC = 100% testendpoint for use WCs. 22.2222222 % Plant flow/plant flow + 7010 NOAEC = 100% testendpoint for use NOAEC = 100% testendpoint for use Dilution, acute 3.735294118 100/MVCs 1.120588238 Instream criterion (1.0 TLC) X's Dilution, chronic units A.5 Instream criterion (1.0 TLC) X's Dilution, chronic units WLAs. 11.20588238 Instream criterion (1.0 TLC) X's Dilution, chronic units A.5 Instream criterion (1.0 TLC) X's Dilution, chronic units A.5 Instream criterion (1.0 TLC) X's Dilution, chronic units WLAs. 11.20588238 Instream criterion (1.0 TLC) X's Dilution, chronic units A.5 Instream criterion (1.0 TLC) X's Dilution, chronic units A.5 Instream criterion (1.0 TLC) X's Dilution, chronic units WLAs. 11.20588238 Instream criterion (1.0 TLC) X's Dilution, chronic units A.5 Instream criterion (1.0 TLC) X's Dilution, chronic units A.5 Instream criterion (1.0 TLC) X's Dilution, chronic units CVC-Cerificient of variation 0.6 Dilution acute (1.0 TLC) X's Dilution, chronic units 1.7 Instruction acute (1.0 TLC) X's Context (1.1 Tracesses (1.1 Tracesses (1.0 TLC) X's Context (1.1 Tracesses (1.0 TLC) X's Context (1.1 Trac	Wice 22,2222222 % Plant flow/plant flow + TQ10 NOTE: If the WCa is > 33%, specify the NOAEC = 100% testlendpoint for use 12,22222222 % Plant flow/plant flow + TQ10 NOAEC = 100% testlendpoint for use 12,22222222 % Plant flow/plant flow + TQ10 NOAEC = 100% testlendpoint for use 12,22222222 % Plant flow/plant flow + TQ10 NOAEC = 100% testlendpoint for use 12,22222222 % Plant flow/plant flow + TQ10 NOAEC = 100M/Ca 12,2222222 % Plant flow/plant flow + TQ10 NOAEC = 100M/Ca NO	a															
		0	WC.		26.77165354	%	low/plant flow		NOTE: If the	IWCa is >33%	enecify the						
Dilution, acute 3735294118 100fWCc 1.120588235 Instream criterion (0.3 Tula) Xs Dilution, chronic 4.5 100fWCc 1.120588235 Instream criterion (1.0 Tula) Xs Dilution, chronic 1.120588235 Instream criterion (1.0 Tula) Xs Dilution, chronic 1.120588235 Instream criterion (1.0 Tula) Xs Dilution, chronic 1.120588235 ACR XS WLA ₂ - converts acute WLA to chronic units 1.120588235 ACR XS WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR XS WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR XS WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR XS WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR XS WLA ₃ - converts acute WLA to chronic units 1.120588253 ACR XS WLA ₃ - converts acute WLA ₃ - converts with LTA ₄ 1.120588253 Tu ₂ NOEC = 15.133006 ACR XS WLA ₃ - converts with LTA ₄ 1.120588253 Tu ₂ NOEC = 15.133006 ACR XS WLA ₃ - converts WLA ₃ ACR XS WLA ₃ - converts WLA ₃	1.120588236 Instream criterion (0.3 Tub.) X's Dilution, acute 3.735294118 1000/WCc	-1	IWC		22.222222	%	llow/plant flow		NOAE	C = 100% test/	andpoint for u	ise					
1.120588235 Instream criterion, acute 1.120588235 Instream criterion (10.3 Tu3) X's Dilution, acute 1.120588235 Instream criterion (10.1 Tu3) X's Dilution, acute 1.120588235 Instream criterion (10.1 Uc) X's Dilution, acute 1.120588235 ACR X's WILA, - converts acute with A to chronic units ACR - acute/critorio ratio 10 LC50NOEC (Default is 10 - if data are available, use tables Page 2) ACR - acute/critorio ratio 0.5 Default is 0.6	MULA _s 1.120588235 Instream criterion (0.3 Tula) X's Dilution, acute 1.120588235 Instream criterion (0.3 Tula) X's Dilution, chronic 1.120588235 Instream criterion (0.3 Tula) X's Dilution, chronic 1.120588235 Instream criterion (1.0 Tula) X's Dilution, chronic 1.120588235 Instream criterion (1.0 Tula) X's Dilution, chronic 1.120588235 Instream criterion (1.0 Tula) X's Dilution, chronic curis 1.120588235 Instream criterion 1.0 Tula) X's Dilution, chronic curis 1.120588235 Instream criterion 1.0 Tula) X's Dilution, chronic curis 1.120588235 Instream criterion 1.0 Tula) X's Dilution, chronic curis 1.120588235 Instream criterion 1.0 Tula) X's Dilution, chronic curis 1.120588235 Instream criterion 1.120588235 Instrument criterion 1.120588235																
1.120588235 Instream criterion (1.0 TUc) X's Dilution, acute 1.120588235 Instream criterion (1.0 TUc) X's Dilution, chronic 1.120588235 Instream criterion (1.0 TUc) X's Dilution, chronic 1.120588235 ACR X's WLA, - converts acute WLA to chronic units 1.120588235 ACR X's WLA, - converts acute WLA to chronic units 1.120588235 ACR X's WLA, - converts acute WLA to chronic units 1.120588235 ACR X's WLA, - converts acute WLA to chronic units 1.120588235 ACR X's WLA, - converts acute WLA to chronic units 1.120588235 ACR X's WLA, - converts acute WLA to chronic units 1.120588235 ACR X's WLA, - converts acute WLA to chronic toxicity 1.120588235 ACR X's WLA, - converts acute WLA, - converts WLA, - conver	WLA _s		Dilution, acu	ie ie	3.735294118		\Ca										
WLA _s 1.120588235 Instream citerion (1.0 TUe) Xs Dilution, chronic 4.5 Instream citerion (1.0 TUe) Xs Dilution, chronic WLA _s 1.120588235 ACR Xs WLA _s - converts acute WLA to chronic units 6.5 Instream criterion (1.0 TUe) Xs Dilution, chronic ACR -acute/chronic ratio 1.0 LC50NOEC (Default is 10 - if data are available, use tables Page 3) 6.5 Default of 0.6 - if data are available, use tables Page 3) CV-Coefficient of variation 0.6 Default of 0.6 - if data are available, use tables Page 2) 6.5 Default of 0.6 - if data are available, use tables Page 2) Constants EA 0.6010373 Default = 2.43 6.5 Statut = 2.43 EC 2.4334175 Default = 2.43 1.7 Default = 2.43 EC 2.4334175 Default = 2.43 (1 samp) No. of sample of Constant is accounted through the Acr. 1.7 Default is accounted to the Acr. EC 2.4334175 Default = 2.43 (1 samp) No. of sample of Constant is accounted to the Acr. 1.7 Acr. acr. The LTA _s , and MDL using it are driven by the Acr. MDL** with LTA _s 6.551386078 TU _c NOEC = 15.193906 [Protects from acute/chronic toxicity) NOEC = 16 AML with lowest LTA 6.551386078 TU _c NOEC = 15.193906 [Protects from chronic toxicity] NOEC = 16 MDL with LTA _s 1.120586263 TU _c LC50 = 89.238843 [Nc Convert MDL FROM TL to TU _c	1.120588235 Instream criterion (1.0 Tub.) xs Dilution, acute 1.120588235 Instream criterion (1.0 Tub.) xs Dilution, chronic 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic units 1.120588235 ACR x's WLA ₃ - converts acute WLA to chronic toxicity 1.120588235 ACR x's WLA ₃ - converts WLA ₂ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ - converts WLA ₃ 1.120588235 ACR x's WLA ₃ 1.120582355 ACR x's WLA ₃ 1.120582555 AC		Dilution, Clin		0.4		2										
Multiple 1.120588233 ACR X's WLA_s - converts acute WLA to chronic units 1.120588233 ACR X's WLA_s - converts acute WLA to chronic units 1.120588233 ACR X's WLA_s - converts acute WLA to chronic units 1.120588233 ACR X's WLA_s - converts acute WLA to chronic units 1.120588233 ACR X's WLA_s - converts acute WLA to chronic units ACCCOefficient of variation 0.6 Default of O.6 Total are available, use tables Page 2 Constants ACCCOefficient of variation 0.6 Default of O.6 Default of O.6 Total are available, use tables Page 2 Constants ACCCOEfficient of variation 0.6 Default of O.6 Total are available, use tables Page 2 Constants ACCCOEfficient of variation 0.6 Default of O.6 Total are available, use tables Page 2 Constants ACCCOEfficient of variation Color of Occupants ACCCOEfficient of variation	Multiple		WLA _a			Instream cr	iterion (0.3 T	Ja) X's Dilution	atribe								
ACR-acute/chronic railo 1.20588235 ACR X's WLAs, = converts acute WLA to chronic units ACR-acute/chronic railo 1.050808235 ACR X's WLAs, = converts acute WLA to chronic units ACR-acute/chronic railo 1.0508000 1.0509000 1.0508000 1.0508000 1.0509000 1.05080000 1.05080000 1.05080000 1.05080000 1.05080000 1.05080000 1.05080000 1.05080000 1.05080000 1.05080000 1.05080000 1.05080000000000000000000000000000000000	11.20588235 ACR X's WLa, = converts acute WLA to chronic units ACR Coefficient of variation 10 LC50MODC (Default is 10 - if data are available, use tables Page 2) CV-Coefficient of variation 0.6 Default of 0.6 - if data are available, use tables Page 2) CV-Coefficient of variation 0.6 Default of 0.6 - if data are available, use tables Page 2) CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and the control of tables CV-Coefficient of variation 0.6 Default and tables CV-Coefficient of variation 0.	15	WLA			Instream cr	iterion (1,0 TL	Jc) X's Dilution	chronic		,						
ACR -acute chronic ratio 10 LC50MOEC (Default is 10 - if data are available, use tables Page 2) LC50MOEC (Default is 10 - if data are available, use tables Page 2) LC50MOEC (Default is 0.4109447) Default is 0.4109447 Default is 0.410947 Defa	ACR -acute/chronic ratio 10 LC50MOEC (Default is 10 - if data are available, use tables Page 3) Constants eA	22	WLAge		11.20588235	ACR X's W	LA _a - convert	s acute WLA to	chronic units								
ACR = acutal chronic ratio	ACR =acute/chronic ratio	G)													_		
Constants EA	Constants Cons	9	ACR acute/	chronic ratio		LC50/NOE	C (Default is	10 - if data are	available, use	tables Page 3)							T
ES 0.6010371 Default = 0.601	ES 0.6010373 Default = 0.601	2 2	Constants	of variation		Default of C	.6 - if data an	e available, us	e tables Page	2)							
EC 2.4334175 Default = 2.43	eC 2.4334175 Default = 2.43 ED 2.70466785 WLAa,c x's eA ED 2.70466785 WLAa,c x's eB ED 3.70466785 WLAa,c x's eB ED 3.7046785 WLAa,c x's eB ED	65		8 3		Default = 0	1 00										
ETA Control ETA	ETA Control ETA			ပ္မ		Default = 2	43										
LTA _{sc}	LTA _{sc} 4604997962 WLA _{sc} X's eA LTA _{sc} LT	v) v				Default = 2	.43 (1 samp)	No. of sample	1	"The Maximum I	Daily Limit is cal	Iculated from t	he lowest		-		
LTA _o 2.70466785 WLAc X's eB Rounded NOEC's MDL* with LTA _o 11.20588263 TU _c NOEC = 8.923884 (Protects from acute/chronic toxicity) NOEC = 15.193906 (Protects from chronic toxicity) NOEC = 16 NOEC = 15.193906 LOwest LTA X's eD NOEC = 16 NOEC = N	LTA _c 2.70466785 WLAc X's eB Rounded NOEC's MDEC = 8.923884 (Protects from acute/chronic toxicity) NOEC = 15.193906 (Protects from acute/chronic toxicity) NOEC = 16.193906 NOEC = 15.193906 Protects from acute/chronic toxicity) NOEC = 16.193906 NOEC = 16.193906 Protects from chronic toxicity) NOEC = 16.193906 NOEC = 16.19		LTA		4.604997962	Wi Aa c X's	A d			LTA, X's eC. The	LTAa,c and ME	L using it are	driven by the	ACR.			
MDL* with LTA*sc 11.20588283 TUc NOEC = 8.923884 Protects from acute/chronic toxicity) Rounded NOEC = 15.193906 AML with LTA* 6.561586078 TUc NOEC = 15.193906 Protects from chronic toxicity) NOEC = 16 AML with lowest LTA 6.561586078 TUc NOEC = 15.193906 LORDE = 16 IF ONLY ACUTE ENDPOINT/LIMIT IS NEEDED. CONVERT MDL FROM TU, to TU. AML with LTA*sc Rounded LC50's 10 MDL with LTA*sc 1.120588263 TU. LC50 = 89.23843 80 MDL with LTA*sc 0.658158608 TU. 1C50 = 151.939060 No lookeC=100% LC50 = NA	MDL* with LTA*sc 11.20588283 TUc NOEC = 8.923884 Protects from acute/chronic toxicity) Rounded NOEC = 9 MDL* with LTA*c 6.581586078 TUc NOEC = 15.193906 Protects from chronic toxicity) NOEC = 16 AML with lowest LTA 6.581586078 TUc NOEC = 15.193906 Lowest LTA Xs eD NOEC = 16 IF ONLY ACUTE ENDPOINT/LIMIT IS NEEDED. CONVERT MDL FROM TUc, to TUc 89.238843 Rounded LC50s Rounded LC50s 90 MDL with LTA*c 1.120588263 TUc, LC50 = 151.939060 Work NOAEC=100% LC50 = NA		LTA		2 70466785	W Ac X's	, a	\\				ľ					
MDL* with LTA, 6:581586078 TU_L NOEC = 15.193906 Protects from chronic toxicity) NOEC = 16 AML with lowest LTA 6:581586078 TU_L NOEC = 15.193906 Lowest LTA Xs eD NOEC = 16 IF ONLY ACUTE ENDPOINT/LIMIT IS NEEDED. CONVERT MDL FROM TU_s to TU_s AML with LTA_s Rounded LC50's 89.23843 Rounded LC50's 90 MDL with LTA_s 0.658158608 TU_s 1C50 = 151.939060 No Use NOAEC=100% LC50 = NA	MDL* with LTA, 6:581586078 TU, NOEC = 15.193906 Protects from chronic toxicity) NOEC = 16.193906 AML with lowest LTA 6:581586078 TU, NOEC = 15.193906 Lowest LTA Xs eD NOEC = 16 IF ONLY ACUTE ENDPOINT/LIMIT IS NEEDED. CONVERT MDL FROM TU, to TU, ROUNGED TU, ROUNGED TU, Rounded LC50's MDL with LTA,c 1.120588263 TU, LC50 = 89.238843 % Use NOAEC=100% LC50 = NA	6	MDL** with L	TAge	11.20588263	2	S	8.923884	(Protects fro	m acute/chrooic	tovicity	- -	Younded NC	(8 :		
AML with lowest LTA 6.581586078 TU_c NOEC = 15.193906 Lowest LTA Xs eD NOEC = 16 IF ONLY ACUTE ENDPOINT/LIMIT IS NEEDED, CONVERT MDL FROM TU_s to TU_s AMDL with LTA_sc 1.120588263 TU_s LC50 = 89.238843 Rounded LC50's 90 MDL with LTA_sc 0.658158608 TU_s LC50 = 151.939060 % Use NOAEC=100% LC50 = NA	AML with lowest LTA 6.581586078 TU _c NOEC= 15.193906 Lowest LTA X's eD	O.	MDL** with L	TĀ.	6.581586078		NOEC =	15.193906	(Protects fro	m chronic toxici	to months			2 6	8 3		
F ONLY ACUTE ENDPOINT/LIMIT IS NEEDED, CONVERT MDL FROM TU _e to TU _e NOCK = 100 NOCK = 1	F ONLY ACUTE ENDPOINT/LIMIT IS NEEDED, CONVERT MDL FROM TU ₄ to TU ₄ Convert MDL with LTA ₂ 1.1205882283 TU ₄ LC50 = 89.238843 % LC50 = 89.238843 % LC50 = 90 LC50 = 90 LC50 = 90 LC50 = NA LC50 = N	-	AML with low	vest LTA	6.581586078		NOEC =	15.193906	I Owest I TA X	ייר פוויטוויט וויט	37		בַּיבַיבַיבַ	٩	8		
F ONLY ACUTE ENDPOINT/LIMIT IS NEEDED, CONVERT MDL FROM TU _e to TU _e MDL with LTA _e	F ONLY ACUTE ENDPOINT/LIMIT IS NEEDED, CONVERT MDL FROM TU _e to TU _e MDL with LTA _e 1.120588283 TU _e LC50 = 89.238843 MDL with LTA _e 0.658158608 TU _e LC50 = 151.939060 W Use NOAEC=100% LC50 = NA	21								3			2	0			
MDL with LTA _s 1,120:88263 TU _s LC50 = 89:238843 Rounded LC50's Rounded LC50's MDL with LTA _s 0,658158608 TU _s LC50 = 151:393060 % Use NOAEC=100% LC50 = NA	MDL with LTA _s 1.120588263 TU _s LC50 = 89.238843 % Rounded LC50's 90 MDL with LTA _s 0.658158608 TU _s LC50 = 151.939060 % Use NOAEC=100% LC50 = NA	8 3	IF ONLY A	ACUTE END	POINT/LIMIT IS		CONVERT ME	JL FROM TU,	to TU,								
MDL with LTA ₆ 0.658158608 TU ₈ LC50 = 151.939060 % Use NOAEC=100% LC50 = NA	MDL with LTA ₂ 0.658158608 TU ₂ LC50 = 151.939060 % Use NOAEC=100% LC50 = 100	1 19	MDL with 1 T		1 120588263	F	- 650	0,000				_	Rounded LC.		%		
10.000 10.00	10.00 10.00	1 9	MDL with LT		0.658158608	5 F	- 000	89.238843	8 8				_C50=	06	%		
88		[2]			200	5		000808.101	ę.	USE NOAECH	%00			4			
		83															

·

1 1 2 1 1 1 1 1 1 1															
Page 2 - Follow the directions to develop a site specific CV (coefficient of variatific for Variations to develop a site specific CV (coefficient of variatific for Variations to develop a site specific CV (coefficient of variatific for Variations to develop a site specific CV (coefficient of variation for military in the forext of the following for the following following for the following followi															
Page 2 - Follow the directions to develop a site specific CV (coefficient of variation of the variation o															
Page 2 - Follow the directions to develop a site specific CV (coefficient of variation of the variation of	Ц	<u>.</u>	٥	۵	3	t.	9	T		f	Ж	7	13	N	o
F YOU HAVE AT LEAST 10 DATA POINTS THAT Verlebrate	200	Page 2 - Foll	low the dir	rections	to develo	site	secific CV	(coefficient	of variatic	(ut					
T.C.D. MANTHERE FOR LEASE 10 UN CHARGE A COLUMN TEACH AND A TEACH A TEACH AND A TEACH AN	51	10000			1										
FOR A SPECIES, ENTERTHE DATA IN EITHER Order of the color of the c	3 12	ARE OUTANE AL	RIF MOT "	TOP ">"	TSTHAT		Vertebrate			Invertebrate					
COLUMN 'C' VUERTEBRATE) OR COLUMN Cognition COLUMN 'C' VUERTEBRATE) THE CV WILL BE CV WILL STORE AND CV E CV WILL CHANTAN O G. CV WILL CHANTAN O G	7.5	FOR A SPECIES	ENTER THE	E DATA IN	EITHER		IC25 Data			C25 Data					
PUCKED BATE THE COV WILL BE PUCKED UP FOR THE COV WILL BE	99	COLUMN "G" (VE	ERTEBRATE) OR COLL	NMI		LC ₅₀ Data	LN of data		LC _{co} Data	N of data				
PICKED UP CRITILE CALCULALUES FOR CALCULATIONS PICKED UP CRITICE CALCULATURES FOR CALCULATIONS PICKED UP CRITICE CALCULATURES FOR CALCULATION PICKED UP CRITICE CALCULATION PICKED CALCUL	95	"J" (INVERTEBR	RATE). THE "	CV" WILL E	띯		********			8	2				
Self-AND & CANTLE CAPUAL I VALUES FOUR 6A, A 2 2 2 3 4 4 4 4 4 4 4 4 4	57	PICKED UP FOR	THE CALCL	JLATIONS TO TO		-			Ψ.	0					
ANYTHING OTHER THANO 6.	50 60	BELOW. THE DI	EFAULT VAL	THE CV	eA,	2			2						
Coefficient of Variation for effluent tests 6 6 6 6 6 6 6 6 6	200	ANYTHING OTH	ER THAN 0.6	3	2	2 4			8		-				
CV = 0.30774847	7.1					5			1 20						
Coefficient of Variation for effluent tests 7 7 7 CV = 0.6 (Default 0.6) 10 10 10 6 = 0.53074847 11 11 11 6 = 0.554513029 13 12 12 6 = 0.554513029 14 14 14 1 Using the log variance to develop each of TSD) 16 10 17 14 1 Using the log variance to develop each of TSD) 16 10 17 17 17 A = 0.410944886 18 20 18 18 18 I Using the log variance to develop each of TSD) St Dev NEED DATA St DATA St Dev 19 19 19 Q = 0.420999823 CV O 0.000000 Variance 0 0.000	72					9			9				-		7
CV = 0.6 (Default 0.6) 10 6 CV = 0.0 (Default 0.6) 10 10 0 = 0.554513029 13 14 11 1 Using the kog variance to develop eA 15 14 14 14 1 Using the kog variance to develop eB 18 18 17 17 A = 0.410944666 19 19 10 B = 0.410944666 10 19 10 B = 0.410944666 10 10 10 B = 0.410944666 10 10 10 B = 0.41094666 10 10 10 B = 0.5099883 CV 0 0 C = 0.50946873 Variance 0 0 B = 0.5099883 CV 0 0	73		- 5			7			7				-		T
CV = 0.6 (Default 0.6) 10 9 9 0 ² = 0.554513029 11	75	Coefficient of Var	nation for effit	nent tests		8			8						
05 = 0.3074847 11 11 11 11 11 11 11 11 11 12 12 12 12 13 14	76	= CO	0.6 (f	Default 0.6		10			0 5		+				
$0^2 =$ 0.3074847 12 12 $0 =$ 0.584513029 13 15 Using the log variance to develop eA 15 16 16 $A =$ 0.28029666 18 18 $A =$ 0.28029666 18 18 $A =$ 0.41094686 18 18 $A =$ 0.4094686 19 19 $A =$ 0.4094686 18 18 $A =$ 0.4094686 19 19 $A =$ 0.409687883 18 18 $A =$ 0.60197335 10 0.000000 $A =$ 0.60193735 10 0.000000 $A =$ 0.60193735 10 0.000000 $A =$ 0.60193735 10 0.000000 <td>77</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>2 -</td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td>	77					1			2 -		+				
Using the log variance to develop eA 15 14 14 14 14 14 14 14	78		0.3074847			12			12				-		
Using the log variance to develop eA 15 16 16 16 16 16 16 16	7.0		554513029			13			13						
Care (Pr. 100, Step 2a of TSD) 16 19 19 19 19 19 19 19	23	Using the log var	dance to deve	An not		14			14						
Z = 1.861 (97% probability stat from table 171 171 171 171 171 171 171 171 171 171 171 171 171 171 172 173 174	85	(6)	100, step 2a	of TSD)		16			19				+		
A = 0.418929666	83	Z=1.881 (97%	probability sta	at from table	8	17			171						
Using the log variance to develop eB 19 19 19 19 19 19 19 1	7 1	٩ = .	.88929666			18			18						
Using the log variance to develop eB	C	eA = 0.4	410944686			19			19						
0,2 = (P. 100, step 20 of TSD) St Dev NEED DATA St Dev 0,4 = 0.283560379 Mean 0 0.000000 Variance B = -0.50908023 CV 0 0.000000 Variance eB = -0.50908023 CV 0 CV	153	Using the log var	iance to deve	Ao ook		20			20			•			
04² = 0.086177696 Mean 0 0 Mean 04₂ = 0.293560379 Variance 0 0.000000 Variance 8 = -0.5090823 CV 0 0 0.00000 Variance eB = -0.5090823 CV 0 CV 0 CV	83	(P.	100, step 2b	of TSD)		St Dev	NEED DATA			NEED DATA	NEED DATA				
0,4 = 0.283560379 Variance 0 0.00000 Variance 0 0.00000 B = -0.61990823 CV 0 0 0.00000 Crown 0 0 0.00000 0	30	$\delta_4^2 = 0.0$	086177696			Mean	0			0	0				
B = 10.6990823	36		293560379			Variance	0	0.000000	Variance	0	0.000000		-		
Using the log variance to develop eC Using the log variance to develop eC (R-100, step 4a of TSD) (R-100, step 4a of TSD) (C = 0.80426658 CC = 2.434417525 CC = 1.80426658 CC = 2.434417525 CC = 0.3074847 CC = 0.3074877 CC =	50		50909823			25	0		ડ	0					T
Using the tog variance to develop eC P. 100, step 4a of TSD P. 100, step 4a of TSD P. 100, step 4a of TSD P. 100, step 4b of TSD P. 10	93		00103/333												
(P. 100, step 4a of TSD)	94	Using the log var	nance to deve	Slop eC											
6 ² = 0.3074847	95	<u>(P</u>	100, step 4a	of TSD)											
0 ⁴ = 0.3074847 0 = 0.55451029 C = 0.898229666 eC = 2.433417525 eC = 2.433417525 Using the log variance to develop eD (P. 100, step 4b of TSD) n = 1 1 This number will most likely stay as "1", 6 ⁿ = 0.5074847 b = 0.80829666	99												-		
0 = 0.584513029 C = 0.88929668 eC = 2.433417625 Using the tog variance to develop eD	76		0.3074847												
C = 0.08929058 C =	200		554513029												
Using the tog variance to develop eD (P. 100, step 4b of TSD) (n = 1 This number will most likely stay as "1". 4	100		433417525												
Using the log variance to develop eD (P. 100, step 4b of TSD)	101		220111200												
n = (P. 100, step 4b of TSD) n = 1	102	Using the log var	nance to deve	alop eD											
n = 1 This number will most likely stay as "1" O ₀ 2 O.3074847 O _n = 0.3074847 O _n = 0.554513029 O _n = 0.889296658 O _n = 0.433417525 O _n = 0.434417525 O _n = 0.44447525 O _n = 0.4447525 O _n = 0.44	103	<u>P</u>	100, step 4b	of TSD)											
0, ² ≈ 0, = 0 D ≈ 0 D ≈	104	= 0	1	This numbe	r will most lik	ely stay as "1"		/month.							
δ _n =	105		0.3074847												
D = 6D =	106		554513029												
= 0	107		889296658												
EQ.	100		433417525												
	108		1												

3 2 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		m	U.	۵	Ш	u	O	I	-	1		M	z	0
Columnition Acquired Columnition Columni		Dage 3.	-ollow direct	tions to	o colonolo		2004							
Colorative Carlot Car	112	2000	Ollow diller	OI CIIOIIS	develop	site speci	IIC ACK (A	cute to Cn	onic Katio					
Case rings on a section of a	11: To determi	ne Acute/Chror	nic Ratio (ACR)	insert usab	le data below	. Usable data	is defined as	alid paired tes	results,					
Table 1, AR Building Version and not out beauty Table 1, Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 2, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 1, AR Building Version and not out beauty Table 2, AR Building Version and not out beauty Table 2, AR Building Version and not out beauty Table 3, AR Building Version and not out beauty Table 4, AR Building Version and no	11: acute and	the ACR divide	at the same ten	nperature, s	ame species.	The chronic P	NOEC must be	less than the	acute					
State Table 1. AR suite yet eartie date Table 1. AR suite yet eartie date Table 1. AR suite yet eartie Table 1. AR suite	116		C	ic ic.	000 2 000	anonin not be	nsed.							
Table 1 Table 2 Table 3 Table 3 Table 4 Table 6 Tabl	11		Table 1. ACR	using Verte	sbrate data					Con	ert LC ₅₀ 's	and NOEC's to	Chronic TU's	
Set # LCa NOCE rest.ACR Locarithm Genmean Antition Action Locarity 2 #WAA	110									П	for us	e in WLA.EXE		
#NA			NOFO		logarithm	Goomoon		ACD to Hos	-	Table 3.	ACR L	ised: 10		
2		N#	W.A.		#WA	#N/A	3	ACR 10 USE				_		
1			A/N#	#WA	#W/A	W/W#		NO ON THE		Enter	-	7		
Fig. 2017 Fig.		l	A/N#	#NA/A	WW#	W/A		NO DATA				ATA TA	NO DATA	
Figure F		П	#N/A	#N/A	#N/A	#N/A	1	NO DATA		7 6		ATA	NO DATA	
Set # Set # Set			#N/A	#N/A	#N/A	#N/A		NO DATA		4	ON ON	ATA	NO DATA	
Set # MAX		-	4/N#	#N/A	#N/A	#N/A		NO DATA		5	NOD	ATA	NO DATA	
Figure F		1	4/N#	#W#	#W#	#N/A		NO DATA		9	NO D	ATA	NO DATA	
Table 1. Result:		1	V/N#	4 VIV#	#WA	#N/A	1	NO DATA		7	NO D	YTA	NO DATA	
Table 1. Result: Vertexiale AGR 0 0 0 0 0 0 0 0 0			YN#	#WA/A	#WA	#WA/A	1	NODATA		80	000	ATA.	NO DATA	
Table 1. Result:		l			Cam	C	VAIL.	A CONTR		6 (SOO	ATA	NO DATA	
Table 1. Result:	132				ACR for vert	ebrate data:				0 3		AIA	NO DATA	
Table 2. Result: Verlebrate ACR Default to 10	133									= 5		C	NO DALA	
Table 2. ACR using Invertebrate ACR Default to 10	134		-		Vertebrate A	R		c	-	27 5		ATA ATA	NO DATA	
Table 2. ACR using Invertebrate data Lose Los	136		N		Invertebrate	ACR		0		2 4		T A T A	1 T V C C V	
Table 2. ACR using Invertebrate data Table 2. ACR using Invertebrate data	136				Lowest ACR			Default to 10		155	CN	ATA	ATAC ON	
Table 2. ACR using invertebrate data Table 2. ACR using invertebrate data Antico Cest ACR Logarithm Geomean Antico ACR to Use	137									16	ON NO	ATA.	NO DATA	
Set# LCs	138			using Inve	tebrate data					17	ON	ATA	NO DATA	
Set # LCs	7									18	ON ON	ATA	NO DATA	
Hule				100		ļ				19	à ON	ATA	NO DATA	
2		/N#		#NIA	#NIA	deomean #N//	톏	ACR to Use		20	ON ON	٩TA	NO DATA	
3 #WA #WA #WA #WA #WA WO DATA #WA #WA #WA			A/N#	1	A/N#	4/V#		NO DATA			-			
# #WA #WA #WA #WA WO DATA #WA #WA WO DATA #WA #WA #WA #WA #WA #WA #WA			#N/A		#N/A	#N/A	İ	NO DATA		convert the Tilicar	Swer voir op	acute limit is nee	an I CEO	
5 #N/A #N			#N/A		#N/A	#N/A	#N/A	NO DATA		enter it here:	CN	ATA %! C.	all Ecol	
Find			#N/A		#N/A	#N/A	#N/A	NO DATA			CN	ATA Tila		
Table 4			#N/A		#W/A	#N/A		NO DATA				1		
B		-	#N/A	- 1	#W/A	#N/A		NO DATA		-				
Table 4. Fitted			#N/A		#N/A	#N/A		NO DATA			_			
Table 4.			#N/A	- 1	#N/A	#N/A		NO DATA						
DILUTION SERIES TO RECOMMEND Table 4. Monitoring Limit We filtuent Tuc We filtuent Tuc We filtuent Tuc We filtuent Tuc Ulution series based on data mean 37.0 2.7046677 16 Dilution series to use for limit 0.6080552 0.4 Dilution series to recommend: 0.6080552 0.4 40.0 10			#WA		#N\#	#N/A		NO DATA						
DILUTION SERIES TO RECOMMEND Limit	153				000	Charles defin								
DILUTION SERIES TO RECOMMEND Limit Wonitoring Limit Wonitoring Limit Limit Wonitoring Limit Limit We Effluent TUC We Effluent TUC Refluent TUC TUC Refluent TUC Refluent TUC TUC TUC Refluent TUC 154				10 VO	en are dara.		0							
Table 4. DILUTION SERIES TO RECOMMEND Limit Monitoring Limit Limit We Effluent TUC % Effluent TUC TUC % Effluent TUC % Effluent TUC % Effluent TUC TUC % Effluent TUC T	155													
Table 4. Monitoring Limit Tube 4. Monitoring Limit Tube 4. Monitoring Limit Tube 5.0 Limit Tube 5.0 Limit Tube 5.0 Limit 156														
Table 4. Monitoring Limit	157			DILUTIC	N SERIE	S TO RECO	MMEND							
Dilution series based on data mean 37.0 2.7046677 Medition series to use for limit Dilution series to use for limit Dilution series to use for limit Dilution series to recommend: 0.608055 0.4	156	Table 4.				Monitoring		l imit						
Dilution series based on data mean 37.0 2.7046677 100 10	155					- 1	F							
Dilution series to use for limit 0.6080552 0.4	150	Dilution ser	no based on	doto moon			70,6677	% Emuent	<u> </u>					
Dilution series to recommend: 0.6080552 0.4 10 10 10 10 10 10 10 1	161	Dilution ser	ie to liee for	limit		-	2.1040017		100					
Dilution series to recommend:	15.7	Dilution fact	tos to ase to	111111		0.000000		٦٥	6.25		_			
Dilution series to recommend: 100.0 1.00 100.0	183	District Ide	11110000101			0.0000002		0.4			_			
10.00 1.00	164	Dilution ser		nend:		1000	4	0007	,		1			
10,0 10,0	165			2		0.00	3 7	100.0	00.1					
Extra dilutions if needed 8.31 12.03 1.0 5.05 19.79 0.4	166					37.0	1.04	16.0	2.50					
Extra dilutions if needed 8.31 12.03 1.0 5.05 19.79 0.4	167					0.70	4.45	0.01	0.25					
Extra dilutions if needed 8.31 12.03 1.0 5.05 19.79 0.4	250					6777	4.45	6.4	15.63					
5.05 19.79 0.4	130					13.67	73.7	2.6	39.06					
4.0 87.81 CO.0	021			an leede		0.3	12.03	1.0	97.66					
172	171					cn.c	19.79	0.4	244.14					
	172										$\frac{1}{1}$			

1 .

Comment: This is assuming that the data are Type 2 data (none of the data in the data set are censored - '<' م' '>'.

Cell: K18
Comment: This is assuming that the data are Type 2 data (none of the data in the data set are censored - < or > 7.

Cell: J22 Comment: Remember to change the "N" to "n" if you have raios entered, otherwise, they won't be used in the calculations

Cell: C40

If you have entered data to calculate an ACR on page 3, and this is still defaulted to "10", make sure you have selected "7" in cell E21

Celt: C41
Comment: If you have entered data to calcutate an effluent specific CV on page 2, and this is still defaulted to "0,6", make sure you have selected "Y" in cell E20

Celt: L48
Comment:
See Row 151 for the appropriate dilution series to use for these NOEC's

Cell: G62
Comment:
Verlebrates are:
Pimephales promelas
Oncorhynchus mykss
Cyprinodon variegatus

Cell: J82
Comment:
Comment:
Ceròdaphina dubia
Mysidopsis banlia

Cell: C117 Comment: Vertebrates are:

Pimephales promelas Cyprinodon variegatus

Cell: M119
Comment: The ACR has been picked up from cell C34 on Page 1. If you have paired data to calculate an ACR, enter it in the tables to the left, and make sure you have a 🎷 in cell E21 on Page 1. Otherwise, the default of 10 will be used to convert your acute data.

Cell: M121
Comment: if you are only concerned with acute data, you can enter it in the NOEC column for conversion and the number calculated will be equivalent to the TUa. The calculation is the same: 100/NOEC = TUc or 100/LC50 = TUa.

Cell: C138 Comment: Invertebrates are:

Ceriodaphnia dubia Mysidopsis bahia

State "Transmittal Checklist" to Assist in Targeting Municipal and Industrial Individual NPDES Draft Permits for Review

Part I. State Draft Permit Submission Checklist

In accordance with the MOA established between the Commonwealth of Virginia and the United States Environmental Protection Agency, Region III, the Commonwealth submits the following draft National Pollutant Discharge Elimination System (NPDES) permit for Agency review and concurrence.

Facility Name:	Town of Marion	Wastewater Treatment Plant			
NPDES Permit Number:	VA0086304				
Permit Writer Name:	Fred M. Wyatt				
Date:	January 31, 201	1			
Major [X]	Minor[]	Industrial []	Mun	icipal [x]
I.A. Draft Permit Packag	e Submittal Includes	s:	Yes	No	N/A
1. Permit Application?			Х		
Complete Draft Permit including boilerplate interplate interplate.		me permit– entire permit,	Х	-	-
3. Copy of Public Notice?				Χ	
4. Complete Fact Sheet?			Х		
5. A Priority Pollutant Scr	eening to determine p	parameters ofconcern?	Х		
6. A Reasonable Potentia	al analysis showing ca	alculated WQBELs?	Х		
7. Dissolved Oxygen calc	culations?		,	Х	
8. Whole Effluent Toxicity	Test summary and a	nalysis?	Х		
9. Permit Rating Sheet fo	r new or modified ind	ustrial facilities?			·Χ
I.B. Permit/Facility Char	actoristics		Yes	No	N/A
		.0	103	X	IVA
1. Is this a new, or currer		·			
•	m water) from the fac	ned sewer overflow points, non ility properly dentified and	X		
3. Does the fact sheet or treatment process?	permit contain a desc	ription of the wastewater	X		

I.B. Permit/Facility Characteristics-cont.	Yes	No	N/A
Does the review of PCS/DMR data for at least the last 3 years indicate significant non-compliance with the existing permit?		Х	
5. Has there been any change in streamflow characteristics since the last permit was developed?		Х	
6. Does the permit allow the discharge of new or increased loadingsof any pollutants?		X	
7. Does the fact sheet or permit provide a description of the receiving water body(s) to which the facility discharges, including information on low/critical flow conditions and designated/existing uses?	х		
8. Does the facility discharge to a 303(d) listed water?	X		
a. Has a TMDL been developed and approved by EPA for the impaired water?	X		
b. Does the record indicate that the TMDL development is on the State priority list and will most likely be developed within the life of the permit?			. X
c. Does the facility discharge a pollutant of concern identified in the TMDL or 303(d) listed water?	Х		
9. Have any limits been removed, or are any limits less stringent, than those in the current permit?		Х	1
10. Does the permit authorize discharges of storm water?	-	X 14	
11. Has the facility substantially enlarged or altered its operation or substantially increased its flow or production?		X	
12. Are there any production-based, technology-based effluent limits in the permit?		X	
13. Do any water quality-based effluent limit calculations differ from the State's standard policies or procedures?		Х	
14. Are any WQBELs based on an interpretation of narrative criteria?		Χ	
15. Does the permit incorporate any variances or other exceptions to the State's standards or regulations?		Х	
16. Does the permit contain a compliance schedule for any limit or condition?		Х	
17. Is there a potential impact to endangered/threatened species or their habitat by the facility's discharge(s)?	Х		
18. Have impacts from the discharge(s) at downstream potable water supplies been evaluated?	Х		
19. Is there any indication that there is significant public interest in the permit action proposed for this facility?		Х	
20. Have previous permit, application, and fact sheet been examined?	Х		

Part II. NPDES Draft Permit Checklist

Region III NPDES Permit Quality Checklist – for POTWs (To be completed and included in the record <u>only</u> for POTWs)

II.A. Permit Cover Page/Administration	Yes	No	N/A
Does the fact sheet or permit describe the physical location of the facility, including latitude and longitude (not necessarily on permit cover page)?	Х		
2. Does the permit contain specific authorization-to-discharge information (from where to where, by whom)?	Х		n 8 123

II.B. Effluent Limits – General Elements	Yes	No	N/A
 Does the fact sheet describe the basis of final limits in the permit (e.g., that a comparison of technology and water quality-based limits was performed, and the most stringent limit selected)? 	Х		
2. Does the fact sheet discuss whether "antibacksliding" provisions were met for any limits that are less stringent than those in the previous NPDES permit?			х

11.0	C. Technology-Based Effluent Limits (POTWs)	Yes	No	N/A
1.	Does the permit contain numeric limits for <u>ALL</u> of the following: BOD (or alternative, e.g., CBOD, COD, TOC), TSS, and pH?	Х	A L	
2.	Does the permit require at least 85% removal for BOD (or BOD alternative) and TSS (or 65% for equivalent to secondary) consistent with 40 CFR Part 133?	Х		
	a. If no, does the record indicate that application of WQBELs, or some other means, results in more stringent requirements than 85% removal or that an exception consistent with 40 CFR 133.103 has been approved?			Х
3.	Are technology-based permit limits expressed in the appropriate units of measure (e.g., concentration, mass, SU)?	Х		
4.	Are permit limits for BOD and TSS expressed in terms of both long term (e.g., average monthly) and short term (e.g., average weekly) limits?	Х		
5.	Are any concentration limitations in the permit less stringent than the secondary treatment requirements (30 mg/l BOD5 and TSS for a 30day average and 45 mg/l BOD5 and TSS for a 7-day average)?		Х	
	a. If yes, does the record provide a justification(e.g., waste stabilization pond, trickling filter, etc.) for the alternate limitations?			Х

II.D. Water Quality-Based Effluent Limits	Yes	No	N/A
Does the permit include appropriate limitations consistent with 40 CFR 122.44(d) covering State narrative and numeric criteria for water quality?	X		
2. Does the fact sheet indicate that any WQBELs were derived from a completed and EPA approved TMDL?		Х	

11.1	D. Water Quality-Based Effluent Limits – cont.	Yes	No	N/A
3.	Does the fact sheet provide effluent characteristics for each outfall?	Х		
4.	Does the fact sheet document that a "reasonable potential" evaluation was performed?	X		d.
	a. If yes, does the fact sheet indicate that the "reasonable potential" evaluation was performed in accordance with the State's approved procedures?	Х		
	b. Does the fact sheet describe the basis for allowing or disallowing instream dilution or a mixing zone?	Х		
	c. Does the fact sheet present WLA calculation procedures for all pollutants that were found to have "reæonable potential"?	Х		
	d. Does the fact sheet indicate that the "reasonable potential" and WLA calculations accounted for contributions from upstream sources (i.e., do calculations include ambient/background concentrations)?	X		
	e. Does the permit contain numeric effluent limits for all pollutants for which "reasonable potential" was determined?	Х		
5.	Are all final WQBELs in the permit consistent with the justification and/or documentation provided in the fact sheet?	Х		
6.	For all final WQBELs, are BOTH long-term AND short-term effluent limits established?	Х		
7:	Are WQBELs expressed in the permit using appropriate units of measure (e.g., mass, concentration)?	Х		
8.	Does the record indicate that an "antidegradation" review was performed in accordance with the State's approved antidegradation policy?	Х		

II.E. Monitoring and Reporting Requirements	Yes	No	N/A
1. Does the permit require at least annual monitoring for all limited parameters and other monitoring as required by State and Federal regulations?	X		
a. If no, does the fact sheet indicate that the facility applied for and was granted a monitoring waiver, AND, does the permit specifically incorporate this waiver?			
Does the permit identify the physical location where monitoring is to be performed for each outfall?	X		
3. Does the permit require at least annual influent monitoring for BOD (or BOD alternative) and TSS to assess compliance with applicable percent removal requirements?		х	
4. Does the permit require testing for Whole Effluent Toxicity?	, X		

II.F. Special Conditions	Yes	No	N/A
Does the permit include appropriate biosolids use/disposal requirements?	Х		
2. Does the permit include appropriate storm water program requirements?			Х

II.F. Special Conditions – cont.		Yes	No	N/A
3.	If the permit contains compliance schedule(s), are they consistent with statutory and regulatory deadlines and requirements?		_	Х
4.	Are other special conditions (e.g., ambient sampling, mixing studies, TIE/TRE, BMPs, special studies) consistent with CWA and NPDES regulations?	Х		
5.	Does the permit allow/authorize discharge of sanitary sewage from points other than the POTW outfall(s) or CSO outfalls [i.e., Sanitary Sewer Overflows (SSOs) or treatment plant bypasses]?		Х	
6.	Does the permit authorize discharges from Combined Sewer Overflows (CSOs)?		Х	
	a. Does the permit require implementation of the "Nine Minimum Controls"?	*		х
	b. Does the permit require development and implementation of a "Long Term Control Plan"?			Х
	c. Does the permit require monitoring and reporting for CSO events?			X
7.	Does the permit include appropriate Pretreatment Program requirements?	Х		

II.G. Standard Conditions		No	N/A
Does the permit contain all 40 CFR 122.41 standard conditions or the State equivalent (or more stringent) conditions?	Х		

List of Standard Conditions - 40 CFR 122.41

Duty to comply
Duty to reapply
Need to halt or reduce activity
not a defense
Duty to mitigate
Proper O & M
Permit actions

Property rights
Duty to provide information
Inspections and entry
Monitoring and records
Signatory requirement
Bypass
Upset

Reporting Requirements
Planned change
Anticipated noncompliance
Transfers
Monitoring reports
Compliance schedules
24-Hour reporting
Other non-compliance

Does the permit contain the additional standard condition (or the State equivalent or more stringent conditions) for POTWs regarding notification of new introduction of pollutants and new industrial users [40 CFR 122 42(b)]?	Х	
new introduction of pollutants and new industrial users [40 CFR 122.42(b)]?		

Part III. Signature Page

Based on a review of the data and other information submitted by the permit applicant, and the draft permit and other administrative records generated by the Department/Division and/or made available to the Department/Division, the information provided on this checklist is accurate and complete, to the best of my knowledge.

Name Fred M. Wyatt

Title Environmental Engineer Sr.

Signature 01/31/2011